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Abstract

Cryptographic protocols are an integral part of today’s communication infrastructure,
where information has to be secured on various levels. The security of cryptographic
protocols has been studied for decades with numerous methods, focuses, and levels of
abstraction. However, no model has been developed so far that captures the specifics
of message exchange protocols that only consist of two rounds, a single client request
and a subsequent server response.

In this thesis, we define and analyze three protocols that offer security guarantees
for two-round message exchange protocols, including authenticated message exchange
(using digital signatures or passwords) as well as confidentiality (using hybrid encryp-
tion). Our protocols are generic in the sense that they can be used to securely implement
any service based on two-round message exchange, because request and response can
carry arbitrary payloads. Our modelings and analyses include realistic aspects char-
acteristic to secure two-round protocols like timestamps and long-lived, but bounded
server memory.

All three protocols are uniformly modeled and analyzed in a simulation-based secu-
rity framework, allowing us to modularize the security analyses and allowing others
to build upon our protocols while utilizing the strong composability results offered by
the simulation-based security notion. In addition, one of the protocols is analyzed in a
concrete computational model; for this we extend the Bellare–Rogaway framework by,
e. g., timestamps and payloads with signed parts.

Analyzing one of the protocols in both a simulation-based and a concrete computa-
tional framework gives insights into the relation between both frameworks; we show a
connection for mutual authentication protocols and point out differences for the case of
secure two-round message exchange. In addition, we discuss how our goal of authen-
ticated message exchange is related to the common security notions of message and
entity authentication.
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1. Introduction

A characteristic feature of certain standardized communication protocols (such as web
services or remote procedure calls, see, e. g., [ML07, Sun98, Win99]) is their restricted
form of communication, these protocols have only two rounds: In the first round, a
client sends a single message (request) to a server; in the second round, the server
replies with a single message (response) containing the result of processing the request.
We call those protocols two-round message exchange protocols.

Several security issues arise from this setting. While one generic approach to ad-
dress such issues is to run it over a standardized security protocol like TLS [DA06] or
SSH [Ylö96], it is sometimes more appropriate to secure the messages directly, i. e., en-
rich them with security-related parts or wrap them in a secure “container” message. In
this way, the messages are not only secured during transport, but they can be stored or
passed on including their security features. We follow the latter approach.

One of the security goals arising is that of authenticated message exchange: The
server wants to be convinced that the request originated from the alleged client and
is not an (unauthorized) duplicate, and the client wants to be convinced that the re-
sponse originated from the server and is a response to its request; our models will later
allow us to express this formally. This goal of authenticated message exchange can be
achieved using digital signatures; however, it is sometimes useful that at least the client
may use a password instead of digital signatures. Therefore, we will later analyze not
only protocols in which signatures are used for authentication, but also a protocol in
which only servers use signatures, whereas clients use passwords for authentication.

Another security goal is that of confidentiality: Both parties want to be sure that only
the two parties involved in a protocol run can read the information they exchange; one
of our protocols will achieve this goal using hybrid encryption.

Analyzing the security of such cryptographic protocols is a widely developed re-
search area, see the next section for an overview. However, so far no model has cap-
tured the specifics of two-round message exchange protocols. And although two-round
protocols for the above-mentioned goals have been alluded to in the literature, to our
knowledge, our work is the first to formally and rigourously specify and analyze pro-
tocols for these scenarios.

For the analysis, we build upon frameworks developed for analyzing cryptographic
protocols: Based on [BR93a], we develop a model for analyzing secure two-round mes-
sage exchange protocols that offer signature-based authentication; and using [Kü06a],
we model and analyze three two-round message exchange protocols that offer different
security guarantees. This requires us to 1. model features in both frameworks that are
usually not included in protocol models, e. g., timestamps and long-term memory, and
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10 1. Introduction

2. fine-tune the security guarantees we can give—for example, the standard definition
for authentication from [BR93a] is just applicable for three or more rounds and cannot
be trivially adapted to two rounds.

Thus, this thesis provides the first formal treatment of two-round protocols that faith-
fully includes relevant characteristics of such protocols, we prove secure three concrete
protocols, and we gain insights into notions of authentication as well as the frameworks
we build upon for our analyses.

State of the Art and Related Work

Although cryptography has been studied for thousands of years, designing secure
cryptographic protocols still seems to be stunningly error-prone. The most prominent
example is the Needham–Schroeder authentication protocol presented in [NS78], which
was years later found to be vulnerable to a seemingly obvious attack, see [Low96]. Dur-
ing the last decades, the formal analysis of the security of cryptographic protocols has
been a vast research area.

Analysis of Cryptographic Protocols

Numerous security notions for cryptographic protocols have been defined on various
levels of generality and abstraction. For some of these notions, tools for automatic anal-
yses are developed (or, first, (un)decidability results are shown), while other notions are
used to prove protocols secure by hand. Some notions are directed at a specific class
of cryptographic protocols, while other notions provide a general framework to model
multiple security goals.

Symbolic and Computational Analysis Many abstract—also called symbolic—models
are based on the work of Dolev and Yao [DY83], who treat messages as formal terms
and essentially model cryptographic primitives as perfect “black boxes”. The advan-
tage of this approach is that automatic analysis of many security properties is possible
on this level, see, e. g., [RT03]. However, there are limits to the automatic analysis of
cryptographic protocols: For example, most security properties become undecidable
when an unbounded number of sessions is considered [DLMS04].

In contrast to symbolic models, computational models [BR93a, Kü06a, Can01, BPW03]
treat protocol participants (as well as the adversary) as probabilistic algorithms and
view messages as bit strings. Automated analysis in such models is, in general, quite
complicated, with [Bla07] being a notable exception. There are, however, some results
that show how security statements for a symbolic model can be extended to a compu-
tational model [AR02, CH06, BL06].

Computational models may be of asymptotic or concrete nature. Concrete analyses
like [BDJR97] precisely compute the success probability of adversaries depending on re-
source bounds, while asymptotic analyses like [BR93a] make more abstract statements,
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e. g., that the success probability of adversaries can be decreased super-polynomially
(up to being “negligible”) by increasing the bit length of cryptographic keys.

All work in this thesis is done in computational models; the first analysis is a concrete
one, the second analysis is of asymptotic nature.

The Bellare–Rogaway Framework The analysis in Section 3 is based on the Bellare–
Rogaway framework from [BR93a], which introduced the first provably secure proto-
col for entity authentication and authenticated key exchange. Their approach to defin-
ing a security notion is called trace-based as the (in)security of a protocol is defined
based on logs (or “traces”) of the actions of an adversary interacting with the proto-
col. The framework has been used, e. g., in [War05] for a computational analysis of
the Needham–Schroeder–Lowe entity authentication protocol, or in [Cho07] to prove
secure a revised version of the Yahalom protocol.

There are also various papers that extend the work of Bellare and Rogaway in multi-
ple directions. For example, in [BR95], the framework is extended to handle the three-
party case and explicitly distinguishes between “normal” players and a server. This
model was then extended in [BPR00] to analyze password-based protocols, and this
model was in turn extended to the setting of group protocols in [BCPQ01]. The authors
of [BWM97] extended the original framework to the asymmetric setting. In [CK01], the
framework was combined with the adversarial model of [BCK98] to use key exchange
protocols for the construction of secure channels. This model has then be extended
in [LLM07] to capture additional attacks.

We note that most extensions concern the security of authenticated key exchange,
while our work is based on the modeling of entity authentication (with the excep-
tion of Chapter 5). We also mention the work in [BF09], in which—independently of
our work and with a different focus—the Bellare–Rogaway framework is extended to
model timestamps.

When referencing [BR93a] it is important to note that their work contains a serious
flaw addressed by Charles Rackoff in unpublished work and later addressed and cor-
rected in [Sho99]; but again, this concerns the security of authenticated key exchange,
not entity authentication.

Simulation-Based Security A subclass of the computational models are the simulation-
based models such as Canetti’s Universal Composition framework [Can01], Backes, Pfitz-
mann, and Waidner’s Black-Box Reactive Simulatability framework [PW01, BPW07] or
Küsters’ Inexhaustible Interactive Turing Machine (IITM) framework [Kü06a]. These
frameworks “guarantee security even when a secure protocol [. . . ] is used as a com-
ponent of an arbitrary system” [Can01] and they enable “modular proofs of secu-
rity” [PW01].

More precisely, these frameworks allow us to abstract from the implementational de-
tails of cryptographic primitives and use idealized variants called ideal functionalities.
The general mechanism is to provide such an ideal functionality for a cryptographic
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primitive and prove that (with very high probability) each attack against the real cryp-
tographic implementation can be translated into an attack against the ideal function-
ality. Together with general compositional results this provides a way to modularly
compose a secure protocol from secure cryptographic primitives.

The Universal Composition framework [Can01] introduced the idea of providing a
unified and standardized way of capturing the security guarantees of a cryptographic
task in ideal functionalities and then proving general security-preserving composition
results that allow real cryptographic implementations to replace the ideal functionali-
ties step-by-step.

Küsters’ IITM framework [Kü06a] follows the same approach and uses interactive
Turing machines to model both ideal functionalities as well as real cryptographic im-
plementations. It offers a more precise handling of the running time of machines (thus,
the inexhaustible in IITM, where a central point in the proof is how machines with poly-
nomial running time can be combined into a single machine with polynomial running
time) and a natural joint-state theorem (which allows to analyze multiple sessions in-
dependently, but to later join their states in a secure way). A more detailed discussion
on similarities and differences to the Universal Composition framework can be found
in [Kü06a].

Other simulation-based security frameworks include Backes, Pfitzmann, and Waid-
ner’s Black-Box Reactive Simulatability [PW01, BPW07] mentioned above (which uses
probabilistic polynomial-time IO automata to model protocols and machines), Delaune,
Kermer, and Pereira’s framework [DKP09] (which is of symbolic nature and based
on the applied pi calculus), or Backes, Pfitzmann, and Waidner’s Cryptographic Li-
brary [BPW03] (which offers both an idealized library of cryptographic primitives as
well as an implementation of that library that is proven to securely realize the idealized
library).

In [KDMR08], the authors prove results comparing and linking the security notions
of several above-mentioned simulation-based frameworks. For further notes on (the
history of) the simulation-based approach, we refer the reader to [BPW07].

Several ideal functionalities for standard cryptographic primitives have been defined
and proven secure in the simulation-based sense: For example, public-key encryption
is dealt with in [CKN03, KT08a], symmetric encryption and authenticated symmetric
encryption are treated in [KT09a], digital signatures are dealt with in [Can04, BH04,
KT08a], and key derivation for encryption is studied in [KT10].

There are, however, only few complex cryptographic protocols that have been ana-
lyzed within the simulation-based framework. We are aware of [CK02, MN06, BCJ+06,
BP06a,GMP+08,GBN09,RKP09], where, for instance, Kerberos and the Yahalom proto-
col are treated. Entity authentication has also been studied in the Universal Composi-
tion framework [CH06] and in combination with the Cryptographic Library [BP03].

In [Sho99], an interesting connection is shown between the security definition for
authenticated key exchange from [BR93a] and a simple simulation-based security defi-
nition.

Our analysis in Section 4 uses Küsters’ IITM framework [Kü06a].
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Web Services and Web Service Security

The initial motivation for our work and the most prominent examples for two-round
protocols that we use throughout this thesis are web services, and as discussed later
on, our models adopt some features and conditions from the web services setting. In
addition, the protocols we propose have partially been alluded to in the web service
world. Thus, we give an overview of the work in this area with respect to security.

Web services are defined in [HB04] as

[. . . ] a software system designed to support interoperable machine-to-
machine interaction over a network. [. . . ] Other systems interact with
the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards.

Herein, SOAP refers to the message format standard defined in [ML07, NGM+07,
KMG+07] for the exchange of messages encoded in the Extensible Markup Language
(XML) [BPSM+08].

Web services are not itself a new technology, the main goal of web service technolo-
gies is to offer a standardized and modularized way to design network protocols.

For example, the XML standard covers the signaling of the character encoding in
messages, XML Schema is employed for (extendable) data types, the structure of mes-
sages is defined in the SOAP standard, the interface of a web service can be described in
the Web Service Description Language (WSDL) and so on. The standardization does not
only allow interoperability, but also to provide software support for developers that
want to offer or call web services. The modularization allows, e. g., to separate aspects
like security or message transport from other aspects of a network protocol.

Web Service Security Standards Consequently, there exist extensive standards for in-
corporating security mechanisms such as encryption, digital signatures, key derivation,
etc. into web services. First, XML Signature [SRE02] and XML Encryption [ER02] define
mechanisms to digitally sign or encrypt XML documents in a way that accounts for the
specifics of XML.1 Then, WS-Security [NKMHB06] defines mechanisms which builds
upon XML Signature and XML Encryption to secure SOAP messages; more precisely,
WS-Security defines elements that can be inserted in the header of a SOAP message to
carry a signature or to indicate signed and encrypted parts etc.

Other related standards exist, e. g., for policies that express which security mech-
anisms a server expects on incoming messages or incorporates into outgoing mes-
sages [NGG+07b], for establishing secure sessions [NGG+07a], or for requesting and
issuing security tokens [NGG+07c]. But some of these standards are so flexible that
so-called profiles like the Basic Security Profile [MGMB10] have been defined to ease the
development of interoperable implementations by limiting the flexibility.

1We note that [BFH+01] defines an alternative, but apparently outdated standard to embed signatures in
SOAP messages.
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Web Service Security Research Due to the intended flexibility, neither WS-Security
nor any other standard or profile defines a specific protocol in the cryptographic sense,
e. g., specify what parts of a SOAP message should be signed or encrypted etc., let alone
provide any kind of security guarantee. In contrast, the goal of WS-Security and related
work is to enable the designer of a protocol to chose the security mechanisms fitting its
security goals and surrounding conditions.

Hence, the underlying security issues and mechanisms for dealing with them are
discussed in various papers. Since 2004, there is an annual ACM Workshop on Secure
Web Services [DM04, DM05, DG06, DP07, DP08, DPS09]; thus, we can only provide an
insight into the work on this topic.

First, we mention that [KR06] proposed a way to map protocols based on WS-
Security to “all the methods [. . . ] that have been developed in the last decade by the
theoretical community for the analysis of cryptographic protocols”, and they argue
that this mapping preserves flaws and attacks. But as [BG05] shows, there are sev-
eral specifics of web services that are usually not considered in other protocol models,
which weakens the statement in [KR06]. The specifics listed in [BG05] include run-
ning multiple protocols with the same identity, shared access to cryptographic keys,
password-based authentication, or timing issues; all of which are captured in our mod-
els (while we abstract from additional specifics mentioned in [BG05]).

There are several approaches to incorporate some of those specifics of web services
into symbolic models. In [BFG05] the applied pi calculus [AF01] is extended to account
for specifics of XML encoded data that are used, e. g., by the XML Signature standard.
The authors of [CLR07] develop a model that allows non-deterministic receive/send
actions as well as unordered sequences of XML nodes, which are used, e. g., in SOAP
message headers. Furthermore, a model that faithfully captures SOAP’s extendabil-
ity would have to include open-ended data structures like [CTR09]. An example for
attacks that are specific to XML-based protocols is the class of XML rewriting attacks,
see [BFGO05], which are dealt with, e. g., in [MA05, GLS07, SB08].

Automatic verification tools for symbolic models have also been tailored to the web
service setting: The language defined in [BFGP03] allows to specify web-service based
protocols and security properties that are verifiable by ProVerif [Bla01], an automatic
verifier for cryptographic protocols in the symbolic model. In [BFGT06], a crypto-
graphic library is proposed that offers both a real cryptographic implementation as
well as a symbolic abstraction that allows to produce a protocol specification analyz-
able by ProVerif. In [BFG08], the authors define a specification mechanism for security
goals and provide tools to compile those specifications into policy files which are then
proven secure against the specified goals using a theorem prover.

Less formal, but more practical approaches include, e. g., [BFGO05], which intro-
duces a tools that analyzes security policies and proposes improvements.

In all the work mentioned above, no concrete protocol for secure message exchange in
two rounds has been proposed, formally specified and rigorously analyzed with respect
to its security prior to our work. The reasons may lie in the above-mentioned flexibility
of the web service standards, but we argue that there exists some prevalent scenarios
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(see Section 2.4) for which a concrete protocol should be proposed and analyzed.
We note that we abstract from many details discussed in work cited above, e. g., from

XML rewriting attacks, and assume that the processing of XML encoded messages,
signatures, and ciphertexts is correctly implemented.

Password-Based Authentication

One of the protocols we propose and analyze partially relies on passwords for authen-
tication. Password-based authentication protocols have widely been analyzed, for ex-
ample, in [BPR00] referenced above, which extends the Bellare–Rogaway framework,
or in [CHK+05] in the Universal Composition framework.

We, however, use an asymmetric setting where we distinguish between servers that
can publish keys through a public-key infrastructure (and thus authenticate their mes-
sages using digital signatures) and clients which only have passwords to authenticate
their messages. In [HK99], several protocols are analyzed in a similar setting.

In [FMCS04], the authors provide a web service based protocol for password-based
authenticated key exchange, but neither in two rounds nor in the asymmetric setting.

Random Oracle Model For the analysis of our password-based protocol we use the
random oracle model that was proposed in [BR93b] as a paradigm for abstracting from
hash functions when analyzing cryptographic protocols.

Despite its serious flaws, for example shown in [CGH04], the random oracle model
is used in current work, e. g., in [MSW08, BFCZ08] for the analysis of TLS or in [BP06b]
for the analysis of signature schemes.

The random oracle model was also used for analyzing password-based protocols,
for example, in [Luc97, BMP00]; nevertheless, there exists work for password-based
protocols without resorting to the random oracle model, see, e. g., [SBEW01, GL06].

Other Related Work

The precise meaning of the notion of entity authentication is discussed in [Gol96].
Timestamps, which are crucial to our work, have been used in various cryptographic

settings, for instance, in a key exchange protocol proposed in [DS81]. In [DG04,BEL05]
symbolic models for protocols with timestamps are introduced and techniques to an-
alyze protocols within these models are described. In [KLP07] the timing model is
similar to ours, however, the paper is concerned with secure multi-party computation.

In our models, a long-lived server processes an unbounded number of requests from
different clients, which is reminiscent of optimistic contract-signing protocols, where
the trusted third party potentially needs to remember an unbounded number of re-
quests, see [ASW98, GJM99]. In [CCK+08], long-lived principals are dealt with from a
complexity point of view, whereas in our work long-lived servers are a modeling issue.

In our modelings, we allow the adversary to reset the server at any time; in [BFGM01]
resetting of principals is discussed in a different context.
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The payloads for our secure two-round message exchange protocols are determined
by the adversary; in [RS09] a framework is proposed that models adversarial input in a
general fashion.

In [JKL04], protocols for authenticated key exchange with only two messages (or two
rounds in our terminology) are studied, but without payloads nor protection against
replay attacks.

Our Contribution

In this thesis and the published work (see notes at the end of the introduction), we
specify and analyze protocols for securing a two-round message exchange protocol in a
setting inspired by web services, and through this gain insights into notions of authen-
tication as well as the modeling and analysis of cryptographic protocols in different
frameworks.

More precisely, we assume that an existing service or protocol consists of exactly two
messages by different parties, request and response, and we specify new protocols that
view those messages as payload, i. e., wrap each of them up into a new message that is
augmented with security-related information. We

1. discuss what authentication refers to in a two-round message exchange setting,
compared to message authentication and entity authentication,

2. specify concrete and practical protocols for three security goals, namely

a) signature-authenticated two-round message exchange,
b) confidential signature-authenticated two-round message exchange, and
c) password-authenticated two-round message exchange,

based on what has been discussed in standardization documents, see below,

3. adapt and extend the Bellare–Rogaway framework to the signature-authenticated
two-round message exchange setting and prove the first of the three protocols
correct and secure in a concrete computational analysis (cf. [KSW10, KSW09a]),

4. model all three security goals in a uniform way in the IITM framework as an ideal
functionality (which is parameterized to account for the difference in the three
security goals), then model the three proposed protocols in the IITM framework
and prove them secure in a simulation-based computational fashion (cf. [KSW09b,
KSW09c]),

5. discuss connections and differences between the two frameworks.

A simple protocol for signature-authenticated two-round message exchange works
as follows: The client appends a message id (e. g., random nonce or sequence number)
to its actual request, signs the result, and sends the signed message to the server. The
server verifies the signature on the received message and checks that it has not seen
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the message id previously. It takes the result of processing the request, appends the
message id it received from the client, signs the message obtained, and sends the signed
message to the client. Finally, the client verifies the signature and the message id.—
The problem here is that the server needs to keep track of all message id’s it has seen,
because otherwise it is easy to mount replay attacks.

A natural and widely considered reasonable approach to solve this problem is to aug-
ment messages by timestamps and use them to filter out replays [CDL06]; this allows
the server to counter replay attacks with only limited long-term memory. Our protocols
follow this approach, but use a combination of message id’s and timestamps such that
we do not have to assume perfectly synchronized clocks.

In addition, we allow that payloads contain parts signed with keys that are also
used for signing entire messages, following what web service standards allow or sug-
gest [NKMHB06]. As explained below, the use of the keys for signing parts has to be
restricted in some sense, because otherwise no security guarantees would be possible.

At least the first two protocols we propose follow what has been alluded to in various
documents. For example, securing messages with timestamps to counter replay attacks
has been informally proposed in [NKMHB06]. However, the protocols we present have
to the best of our knowledge not been precisely defined nor analyzed previously.

Our first security analysis is based on the seminal work [BR93a] by Bellare and Rog-
away. The framework developed therein is, however, not general enough. We extend
it in two directions: first, we add digital signatures, local clocks, and timestamps etc.,
and, second, we add payloads and signature oracles for dealing with signed parts. Our
model allows the adversary almost complete control over the local clocks of the prin-
cipals, the only requirement is that clocks are monotone. In particular, we do neither
assume synchronized clocks nor a bounded clock drift. A crucial point in our extension
of the Bellare–Rogaway framework is that the latter only considers authentication pro-
tocols with at least three rounds (and that this is in fact a fundamental requirement for
their definition of authenticity); our definition is a non-trivial adaptation of theirs and
the first such notion suitable for two-round protocols.

We then formally define a protocol for the signature-authenticated two-round mes-
sage exchange setting and prove it secure, given a signature scheme that fulfills some
standard security notion.

In contrast to [BR93a], we carry out a concrete computational analysis of the pro-
posed protocol instead of an asymptotic one; we obtain the latter as a consequence.

Our second security analysis of all three proposed protocols is carried out in the
Inexhaustible Interactive Turing Machines framework [Kü06a].

First, we define an ideal functionality that is parameterized such that it provides a
uniform way to model all three security goals mentioned above. In addition to the se-
cure message transfer itself, the modeling includes expiration of a session on the server
side (which is necessary due to the limited memory we assume), an explicit modeling
of password guessing in the case of password-based authentication, and a simple, but
powerful corruption mechanism. Hence, our modeling is one of the most complex ideal
functionalities for protocols we know of.
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We then define functionalities that implement the protocols we propose: For each
of the three protocols, we give implementations for the client and server parts of the
protocol, as well as some additional functionalities that are reused for all three imple-
mentations. The three protocols are then shown to securely realize the (parameterized)
ideal functionality (in case of the password-based protocol, security holds in the ran-
dom oracle model).

We also share some insights into the IITM framework gained while modeling the
protocols, e. g., on a notion of “correctness” in the IITM framework similar to the one
in [BR93a], or the joint-state realization of digital signatures.

After using these two frameworks to analyze our protocol, we discuss the relation
between both frameworks. To this end we first show that for a simpler case (mutual
authentication protocols), there is a strong connection at least in one direction: mutual
authentication protocols that are secure in the sense of the Bellare–Rogaway framework
securely realize an ideal mutual authentication functionality in the IITM framework.
We then give some insights on the relation for the more complex case of secure two-
round message exchange.

In summary, our work provides the first firm theoretical underpinning for realis-
tic and secure implementations of services which require authentication and/or con-
fidentiality in two rounds. We gain insights on notions of authentication and define
“message exchange authentication” as a new, but natural intermediate step between
message and entity authentication. In addition, the analysis serves as a case study for
modeling complex protocols in both a concrete computational as well as a simulation-
based framework.

Pre-Published Results The first protocol we analyze, SA2ME-1, was specified and an-
alyzed in [KSW10, KSW09a], together with most of the results in Chapter 3. Parts of
the results in Chapter 4 were published in [KSW09b, KSW09c], namely the analysis of
a simpler modeling of SA2ME-1. In this thesis, we extended the results to uniformly
model not only SA2ME-1, but also two other protocols introduced in this thesis. We
refer the reader to Section 4.6.5 for remarks on differences between the published work
and Chapter 4.

Structure of this Thesis

We introduce the general setting of secure two-round message exchange in Chapter 2.
First, after some prerequisites (Section 2.1), we discuss different notions of authenti-
cation (Section 2.2). After a general introduction into aspects of securing two-round
protocols (Section 2.3), we present three different security goals or protocol classes for
securing a two-round message exchange (Section 2.4) and informally introduce the pro-
tocols we use to implement a secure two-round message exchange (Section 2.5).

In Chapter 3, we analyze one of these protocols, SA2ME-1, in a model based on the
framework for entity authentication introduced by Bellare and Rogaway in [BR93a].
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We first introduce both the basic and the adapted model (Sections 3.1 and 3.2), we
then formally define SA2ME-1 in this model (Section 3.3), give correctness and security
definitions (Section 3.4) for protocols in our model, and finally show that SA2ME-1 is
secure and correct according to those definitions (Section 3.5).

In Chapter 4, we use the IITM framework introduced by Küsters in [Kü06a]. After an
introduction into the IITM framework (Section 4.1), we propose an ideal functionality
that can be parameterized to express the three security goals (Section 4.2). We then give
realizations which implement the three protocols (Section 4.3) and prove the security of
the given realizations (Section 4.4). We also argue how our realizations can be further
implemented (Section 4.5), and then conclude the chapter with some remarks on the
IITM framework (Section 4.6).

The relation between both frameworks is studied in Chapter 5. A connection is
proven for the case of mutual authentication (Section 5.1), after which we make some
remarks for secure two-round message exchange (Section 5.2).

We conclude in Chapter 6.
The Appendices A, B, and C contain pseudo code etc. used and referenced in Chap-

ters 3, 4, and 5, respectively.





2. Secure Two-Round Message Exchange

In this chapter, we introduce the setting of two-round message exchange protocols and
their characteristics, and we informally specify three protocols for securing two-round
message exchanges.

We start with some prerequisites in Section 2.1 and generally discuss different notions
of authenticity in Section 2.2. In Section 2.3, we explain our general approach as to what
our modelings include. We then define different security goals for securing two-round
message exchanges in Section 2.4 and specify protocols for those goals in Section 2.5.

2.1. Prerequisites

In this section, we introduce terms, notations, conventions, and methods used through-
out this thesis.

2.1.1. Two-Round Protocols

Some communication protocols or standards are restricted to just two messages, which
are called request and response throughout this thesis. Usually, one refers to the initiator
and thus the sender of the first message as client, while the receiver of the first message
is called server, we also adopt this notion.

The restriction to two rounds is useful, for example, because the server can simply an-
swer the request and then forget about it, i. e., the server does neither have to keep state
information for protocol sessions after sending a response (see below for exceptions)
nor does it have to care for situations like out-of-order arrival of protocol messages.

For example, the SOAP standard [ML07,NGM+07,KMG+07], which is used as a part
of the web services protocol stack, defines “SOAP-Supplied Message Exchange Pat-
terns and Features” (see Section 6 of [KMG+07]). Only two message exchange patterns
are defined, “Request-Response” and “SOAP Response” (where the latter simply is a
variant of the first in which the request does not conform to the SOAP standard).

Other examples for two-message protocols include remote procedure calls (RPC),
see [Sun98], or XML-RPC [Win99], a predecessor of SOAP.

Note that throughout this thesis, we refer to protocols with just two messages as two-
round protocols, similar to, e. g., [BR93a]; whereas other authors use the term “round” to
refer to one message per participant, and thus would call protocols with two messages
“one-round protocols”, see, for example, [Jou04].

21



22 2. Secure Two-Round Message Exchange

2.1.2. Asymptotic Analyses

Several security definitions and analyses in this thesis are of asymptotic nature: Usu-
ally, a cryptographic primitive or protocol that is parameterized by a security parameter
η ∈N is called secure in an asymptotic analysis if the probability that an adversary can
successfully attack the primitive or protocol drops super-polynomially in the security
parameter, while the algorithms of the primitive or protocol run in time polynomial in
the security parameter. For example, when analyzing encryption schemes, their secu-
rity is often analyzed asymptotically by viewing the length of the keys as the security
parameter.

Formally, the success probability of an adversary against some system that is param-
eterized by a security parameter is then required to be negligible in the security parameter,
i. e., for every positive polynomial p there exists an integer n > 0 such that for all η > n
the success probability of the adversary against the system run with security parameter
η is less than p(η)−1. Analogously, we say that some probability f is overwhelming if
1− f is negligible.

In contrast, our analysis in Chapter 3 of concrete computational nature, i. e., we com-
pute precise running times and success probabilities for adversaries.

2.1.3. Cryptographic Primitives

2.1.3.1. Digital Signatures

A signature scheme Ω is a triple of algorithms Ω = (G, S, V) satisfying the following
conditions:

1. G is a key generation algorithm, i. e., a probabilistic algorithm which expects the
security parameter 1η and produces a pair (pksig, sksig), where pksig is a public (or
verification) key and sksig the corresponding secret (or signature) key;

2. S is a signature algorithm, i. e., a probabilistic algorithm that for any bit string m ∈
{0, 1}∗ and any secret key sksig produces a signature S(m, sksig);

3. V is a deterministic verification algorithm which on input ((m, S(m, sksig)), pksig)
returns true if (pksig, sksig) has been generated by G.

All algorithms have to run in time polynomial in the sum of the security parameter
and the input length. The algorithms are allowed to fail, but for each possible message
m, the probability that one of the algorithms fails if a key pair is generated, then used
to create a signature of m that is verified afterwards, has to be negligible in the security
parameter.

Note that we usually denote public and private keys for signature schemes by pksig

and sksig with a superscript “sig” to distinguish them from public and private keys for
asymmetric encryption schemes, see below.

By {m}sksig we denote the pair (m, σ) where σ is the output of S(m, sksig), i. e., {m}sksig

is the bit string m accompanied by a valid signature obtained from the signature scheme
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for the signature key sksig. We call a signature σ a valid signature of m for the key pksig

if V((m, σ), pksig) returns true.

EUF-CMA Security We recall a standard notion (see [GMR88]) for security of signa-
ture schemes, namely existential unforgeability under chosen message attacks (EUF-CMA):
An adversary against a signature scheme is a probabilistic algorithm that as input re-
ceives a public key pksig generated by the key generation algorithm, and has access to a
signature oracle that on input m generates a valid signature of m for the key pksig. The
adversary is successful if it produces a pair (m′, σ) with a valid signature σ (for the key
pksig) of some m′ which has not been signed by the signature oracle before.

A signature scheme is EUF-CMA secure in the asymptotical sense if the success prob-
ability of any adversary is negligible in the security parameter.

For a running time t (relative to some machine model, see below), natural numbers q
and l, and a probability ε, an adversary (t, q, l, ε)-breaks the signature scheme if it runs
in time bounded by t, uses at most q oracle queries, each query is of length at most l, and
is successful with probability at least ε. Consequently, a signature scheme is (t, q, l, ε)-
secure in the concrete computational sense if there is no adversary that (t, q, l, ε)-breaks
it.

2.1.3.2. Asymmetric Encryption

An asymmetric encryption scheme (or public key encryption scheme) Σae is a triple of algo-
rithms Σae = (G, E, D), satisfying the following conditions:

1. G is a key generation algorithm, i. e., a probabilistic algorithm which expects the
security parameter 1η and produces a pair (pkae, skae), where pkae is a public (or
encryption) key and skae the corresponding secret (or decryption) key;

2. E is an encryption algorithm, i. e., a probabilistic algorithm which for any bit string
m ∈ {0, 1}∗ (also called plaintext) and any public key pkae produces a ciphertext
E(m, pkae);

3. D is a deterministic decryption algorithm which on input (E(m, pkae), skae) returns
m if (pksig, sksig) has been generated by G.

We denote public and private keys for encryption schemes by pkae and skae with
a superscript “ae” (for asymmetric encryption) to distinguish them from public and
private keys for signature schemes, see above.

By 〈m〉ae
pkae we denote a ciphertext of some plaintext m under a public key pkae.

IND-CCA2 Security Again, we recall a standard security notion (see [BDPR98]), here
indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2). An adversary
against an asymmetric encryption scheme is a probabilistic algorithm that is handed
a public key and has access to a decryption oracle, which on input of a ciphertext y
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outputs the corresponding plaintext under the corresponding private key. The adver-
sary has to generate two plaintexts m0 and m1 and is then handed the encryption of mb
where b is chosen uniformly at random from {0, 1}. The adversary is successful if it can
correctly determine b without handing mb to the decryption oracle.2

An asymmetric encryption scheme is IND-CCA2 secure in the asymptotic sense if the
success probability of any adversary is negligible in the security parameter.

2.1.3.3. Symmetric Encryption

A symmetric encryption scheme Σse is a triple of algorithms Σse = (G, E, D), satisfying the
following conditions:

1. G is a key generation algorithm, i. e., a probabilistic algorithm which expects the
security parameter 1η and produces a symmetric (or shared) key k;

2. E is an encryption algorithm, i. e., a probabilistic algorithm which for any bit string
m ∈ {0, 1}∗ (called plaintext) and any secret key k produces a ciphertext E(m, k);

3. D is a deterministic decryption algorithm which on input (E(m, k), k) returns m.

By 〈m〉sek we denote a ciphertext of some plaintext m under a key k (where se stands
for symmetric encryption).

IND-CCA2 Security As for asymmetric encryption, we use the notion of indistinguisha-
bility under adaptive chosen-ciphertext attack for symmetric encryption schemes. As above,
the adversary is a probabilistic algorithm that has access to a decryption oracle; but
since there is no public key, the adversary also has access to an encryption oracle which,
on input of a plaintext x returns the corresponding ciphertext y. Again, the adversary
has to generate two plaintexts m0 and m1 and later determine b after receiving mb where
b is chosen uniformly at random from {0, 1}. Analogously to above, a symmetric en-
cryption scheme is IND-CCA2 secure in the asymptotic sense if the success probability
of any adversary is negligible in the security parameter.

2.1.3.4. Hybrid Encryption

For large plaintexts, one usually wants to combine the advantages of symmetric and
asymmetric encryption, e. g., using the easier key-management of asymmetric encryp-
tion while being able to efficiently encrypt large plaintexts.

Therefore, for hybrid encryption, one uses an asymmetric encryption scheme Σae and
a symmetric encryption scheme Σse, and encrypts a plaintext x under a key pkae by
1. generating a key k for Σse, 2. encrypting the plaintext x with scheme Σse under key
k, 3. encrypting the key k with scheme Σae under some key pkae, and 4. transmit both
ciphertexts resulting from steps 2 and 3.

For a formal treatment of hybrid encryption, see, e. g., [CS03].
2The non-adaptive variant (IND-CCA1), not used in this thesis, restricts the adversary in that it may not

use the decryption oracle after receiving mb.
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2.1.3.5. Hash Functions

A cryptographic hash function is a function H : {0, 1}∗ → {0, 1}l for some l ∈ N that—
informally—fulfills the following security properties:

• Given a value y ∈ {0, 1}l , it should be computationally infeasible to find any
x ∈ {0, 1}∗ with H(x) = y (preimage resistance).

• Given a value x0 ∈ {0, 1}∗, it should be computationally infeasible to find x1 such
that H(x0) = H(x1) (second preimage resistance).

• It should be computationally infeasible to find x0, x1 ∈ {0, 1}∗ with x0 6= x1 but
H(x0) = H(x1) (collision resistance).

Note that this is an informal definition: For example, for any fixed function h, as
{0, 1}l is finite, there obviously is a collision (a pair x0, x1 ∈ {0, 1}∗ with x0 6= x1 but
H(x0) = H(x1)), and thus, there always exists an adversary which simply outputs a
collision. For a more formal treatment of hash functions and the security requirements,
we refer the reader to [RS04].

We will later refer to these properties in the context of a random oracle (see below),
for which the above security properties hold.

Random Oracle Model When cryptographic hash functions are used as a primitive in
protocols, the analysis of those protocols is often carried out in the random oracle model
to abstract from the complications touched above.

In this model, all parties have access to a random oracle that answers every query
with a response chosen uniformly at random from {0, 1}l for some fixed l ∈ N, with
the restriction that on subsequent queries with the same input, it answers with the same
output. Thus, the random oracle models a randomly chosen function from the domain
{0, 1}∗ → {0, 1}l for a fixed length l, but operates as a black-box. Obviously, for a
random oracle, the above security properties hold in an asymptotical sense if l is the
security parameter.

The random oracle model was proposed as a paradigm for the analysis of crypto-
graphic protocols in [BR93b]. One hopes that the security results obtained in those
analyses are a strong evidence that security is guaranteed even if the random oracle is
replaced by a concrete hash function that, from experience and research, seems to fulfill
the three above-mentioned security properties in practice.

This is not supported by sound reasoning, and as shown in [CGH04], there exist (ar-
tificial examples for) signature and encryption schemes that are secure when analyzed
in the random oracle model, but that become insecure if the random oracle is replaced
by any specific function or even a function chosen uniformly at random from any fam-
ily of functions. Nevertheless, the random oracle model is used in current work, see
related work in Chapter 1.
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2.1.3.6. Passwords

A password is a sequence of characters that is a shared secret between a system and a
user of that system. By generally keeping the password confidential, but including it (in
a secure manner) in messages, the server can check if messages that seem to originate
from a user are authentic.

Analyzing password-based security systems strongly differs from analyzing other
cryptographic primitives like digital signatures, as the concept of a security parameter
introduced earlier to analyze security in an asymptotic fashion is unrealistic for pass-
words:

Passwords are often chosen by humans, who usually choose them such that they are
easy to remember or type in. Even if they are generated automatically, one usually
tries to limit the length to make them (relatively) easy to type in or even remember.
Hence, they are often not chosen randomly, they are usually relatively short (compared
to standard sizes for cryptographic keys or nonces etc.) and chosen from a limited set of
characters [FH10], and to increase their length, one has to make drawbacks on usability,
while key-lengths are “only” bounded by technical limitations.

Therefore, when analyzing password-based protocol in a framework in which secu-
rity proofs are carried out in an asymptotic sense, we have to assume that the adver-
sary has a non-negligible probability of success in some sense, e. g., by simply guessing
passwords. Therefore, in Chapter 4, we explicitly model the adversary’s abilities, e. g.,
to guess a user’s password. See Section 4.2.2 for some remarks on our modeling of
password-based security in that chapter.

2.1.3.7. Trust Models

When using digital means (like digital signatures or passwords) for authentication, one
has to associate keys or passwords with real-world objects (persons, organizations,
roles etc.). To this end, one must usually use some form of trust model that defines
which keys or passwords one trusts to correctly authenticate communication partners.

Assume that A wants to verify if messages that claim to belong to party B are authen-
tic. If passwords are used, the situation is usually relatively easy: A can simply keep
a (local) list of identities and their passwords (or some information derived from their
passwords, like hashed passwords) and check if messages claiming to originate from B
contain (information derived from) B’s password.

For digital signature keys, A can follow the same approach and manage a list of
trusted keys directly. Alternatively, A could use a public key infrastructure (PKI). For
example, a web of trust approach with some trust metric may be acceptable, e. g., if the
authentication requirements are less strict. Otherwise, a hierarchical PKI might be useful,
where one trusts a limited and fixed set of certification authorities that offer a service to
bind a B’s key to (some aspect of) B’s identity by issuing a certificate following some
trustworthy policy. The last approach is widely used, e. g., in the internet for securing
sessions with SSL [HE95] or its successor TLS [DA06].
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2.1.3.8. Nonces

Nonces, short for numbers used once, are values used at most once for the same purpose.
The term usually refers to large random numbers or bit strings, e. g., in the case of an
asymptotic analysis, one would use random bit strings from the set {0, 1}η where η is
the security parameter.

If used correctly, nonces have at least two security-relevant applications:
Firstly, if a party randomly choose a nonce, it can assume that the probability that the

nonce collides with polynomially many other nonces is negligible, even if those other
nonces are not chosen randomly. This is useful, e. g., in challenge-response mechanisms
(which we describe in the next section), where a party that sends a challenge wants to
be sure that the challenge does not collide with an earlier challenge of any party.

Secondly, one can assume that if a nonce is kept confidential, an adversary that can-
not break the confidentiality is not able to guess the nonce and thus cannot break a
protocol run. For example, in our protocol PA2ME-1 introduced in Section 2.5.3, we
use an encrypted nonce in a setting with a weak form of authentication (passwords) to
guarantee that, even if the adversary is able to guess the password, it cannot break into
a session of the protocol by simply faking a request message, as it does not know the
nonce that is used by the client (but it can start new sessions, see below).

2.2. Notions of Authentication

In the introduction to [BR05], Bellare and Rogaway informally introduce authenticity (in
a network setting) in the following way:

We want the receiver, upon receiving a communication pertaining to be
from the sender, to have a way of assuring itself that it really did originate
with the sender, and was not sent by the adversary, or modified en route
from the sender to the receiver.

This is only a rough definition, from which several more precise security goals arise
(in [BR05] and throughout the literature); two common goals include message authen-
tication and entity authentication: Informally, message authentication expresses that if a
party B receives a messages that appears to originate from a sender A, the receiver B
knows that at some point in the past, A has seen the message and actively approved it3;
but B has no guarantee when this happened. In contrast, entity authentication is usu-
ally defined in the context of protocols, where A and B exchange multiple messages:
Here, B wants to be sure that it is “talking to A”, i. e., that A receives and sends the
messages that B sends and receives at this time, respectively.

However, protocols that provide entity authentication usually use more than two
rounds to fulfill their security goal(s): In [BR93a, Section 4.2], Bellare and Rogaway give

3Here, it is important to distinguish between the payload and the message itself, i. e., the payload may
originate at another party, but A has to add some security measures (e. g., a digital signature) to the
message such that the message as a whole originated from A.
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the following definition for authentication protocols, where “mutual authentication”
stands for “mutual entity authentication”:

DEFINITION. We require that any mutual authentication protocol have
R ≥ 3 rounds. We implicitly make this assumption in our definition and
throughout the remainder of this paper. [. . . ]

Thus, the question arises what form of authentication is possible if communication is
restricted to two rounds. As shown below, the goal of mutual entity authentication in
only two rounds requires additional assumptions like synchronized clocks. But on the
other hand, as shown in this thesis, we can achieve more than message authentication
with simple assumptions like the existence of monotonous clocks.

Figure 2.1 gives an informal overview (which is not intended to be exhaustive) of
which authentication goals can be reached by what means (For some further notes on
the interpretation of authentication goals, we refer the reader to [Gol96].):

• As noted above, message authentication only guarantees the authenticity of the mes-
sage itself, i. e., if it was really emitted by the alleged sender. This goal can be
reached using digital signatures if one assumes that 1. a party may certify its
identity by demonstrating the knowledge of a certain secret key and 2. there is
some mechanism to link keys to identities, see Section 2.1.3.7.

• Message exchange authentication informally adds freshness, i. e., guarantees that a
message was never received and accepted before4. As shown below, adding
nonces and timestamps to message authentication is one possibility to achieve
this security goal under reasonable assumptions.

• Finally, entity authentication adds synchronicity, i. e., guarantees that in an exchange
of messages, the partner is running the protocol at the same time. This can be
achieved by adding the assumption of synchronous clocks to the message ex-
change authentication setting, or alternatively by a challenge–response mecha-
nism (see below).

For illustrating synchronicity, assume that in a protocol, party A randomly chooses a
nonce r, sends it to party B, and later receives a message m signed by B that contains r.
Then, if the set from that r is chosen is large enough to prevent guessing and we assume
that only B has the power to sign messages with its private key, A can at least be sure
that B was active after A chose r. This may give A the guarantee that A and B are active
“at the same time”. The general mechanism behind this is referred to as challenge–
response.

But in two-round protocols, the receiver of the first message, the server, can only
send one message, hence, it cannot send a challenge to the client, as it cannot receive
a response. Thus, from the message alone (without further assumptions), the server

4Again, it is important to distinguish between the payload and the message itself, i. e., the same payload
may be received multiple times, but only if it was sent multiple times in different messages.
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Figure 2.1.: Authentication means and goals

cannot know if both client and server are active “at the same time” in the sense above;
the client may have created the request message a long time ago (which may not be
detectable due to asynchronous clocks) and the message may have been delayed, e. g.,
due to network failure or an attack.

The challenge–response mechanism would also allow the server to resist replay at-
tacks: A replay attack occurs if an adversary that has some control over the network
and overhears the communication between two parties later replays the communica-
tion made by one party to trick the other party into believing that another session of
the protocol is running.

In an unprotected two-round protocol with client and server as above, the attacker
may for example be able to just send two copies of a client’s message to a server, making
the server believe that the client has made two (equal) requests etc. If the server would
be allowed to send more than the response message, it could for example send two
different challenges back and wait for two (different) responses. But in two rounds,
another mechanism is necessary to prevent replay attacks and guarantee freshness as
defined above.

Therefore, we use timestamps and equip the server with long-term memory as ex-
plained in Section 2.3.2.
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2.3. Securing Two-Round Message Exchange

2.3.1. Message Wrapping and Alternative Approaches

In this thesis, we secure protocols that consist of two messages. To this end, we secure
each of those messages by wrapping them in a new message that also contains some
security-related parts. The original messages are referred to as payloads throughout this
thesis.

There is an alternative: Protocols like SSL [HE95], TLS [DA06], or SSH [Ylö96] could
be used to secure a message exchange protocol by first establishing a secure connection
between two parties and then running the desired message exchange protocol over this
connection. This increases the number of messages that have to be exchanged between
the two parties, hence, we would not refer to such an approach as secure two-round
message exchange. See Section 2.3.1.1 below for some further notes on why we do not
choose this approach.

To be precise, there is another approach that is used in the WS-Security standard
to secure SOAP messages [NKMHB06]: A SOAP message already is divided into a
SOAP header and a SOAP body, where the SOAP body contains the payload that SOAP
is supposed to encode and transfer, while the flexibly extendible SOAP header contains
metadata like sender and receiver of the message etc.

WS-Security then defines some additional elements that can be inserted into a SOAP
header to encode security-related information such as signatures and timestamps. In
addition, one also uses header elements defined elsewhere, e. g., MessageID and Re-
latesTo defined in WS-Addressing [BCC+04], to further secure messages.

Thus, a SOAP message is secured not by wrapping the message into a new message,
but by inserting the appropriate elements in the SOAP header, which has a pre-defined
flexible structure that allows for such insertions.

We remark that this third possibility is only syntactically different from our approach,
where a message is viewed as payload and then wrapped into a new message; all the
results presented in this thesis would also hold if we would take the approach of WS-
Security. But the third possibility is less flexible in that it is restricted to messages which
allow for such insertions, therefore, we use the message wrapping approach.

Note that XML Signatures offers means to sign multiple elements (like, e. g., the mes-
sage body together with a list of headers) in one signature, binding those parts of the
message together; thus, even if in our protocols messages are signed as a whole, this can
be transferred to the encoding of WS-Security where the parts that have to be signed
are scattered throughout the SOAP message.

2.3.1.1. Connection-Centric and Document-Centric Views

As explained above, a common way to secure a protocol is to run the entire connection
for that protocol over a special security protocol. For example, a web service message
may be sent over an HTTPS connection, i. e., a HTTP connection that is secured by
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TLS [DA06]; this may allow the receiver to check the authenticity of the message and
ensure confidentiality during the transmission etc. Similarly, the connection could be
secured using SSH [Ylö96] etc.

But there are drawbacks to this approach: First, the data transferred is only secured
during the transmission; so, after a message is transferred, the data is no longer secured
on the receiver’s side (e. g., while being stored or processed). This is undesirable if it is
necessary to, e. g., ensure confidentiality not only during transmission, but also during
further processing or storage at the receiver’s side.

Second, the protocol’s parties may not be able to establish a direct connection. In-
stead, they may, for example, transfer messages over intermediary systems that, e. g.,
cache several messages or preprocess parts of the messages and thus play an active
role in the protocol. Then, each of these connections between one system and the next
one may be secured using TLS or similar measures, but this does not ensure that the
message is secured while stored or processed on an intermediary system.

Therefore, in the world of web services, one often has takes document-centric view,
where messages are viewed as stand-alone documents, which should be secured as
such, in contrast to a connection-centric view that focuses on only secures the connections
between parties. In [NKMHB06, Section 1.1.1], security for the document-centric view
is referred to as “end-to-end message content security” in contrast to transport-level
security.

Hence, we provide securement on the document or message level. This does not
rule out combining our approach with, e. g., TLS: In our analysis, we show that secu-
rity is guaranteed independently from the underlying transport scheme, hence, adding
another security layer is no drawback, but might be useful, e. g., to reach additional
security goals: Running our SA2ME-1 protocol (which offers no confidentiality) over
a connection that is secured by TLS may result in both authenticity of the message as
well as confidentiality during the transmission.

2.3.2. Features of our Models

2.3.2.1. Timestamps

To overcome the above-mentioned problem of the server to check if a client is active
“at the same time”, one can include timestamps in the messages. But if one relies on
these timestamps, one would also have to assume that all parties have access to syn-
chronized clocks. Besides the fact that hardware clocks are seldomly synchronized per-
fectly, there may be situations where an adversary may be able to manipulate a party’s
clock, cf. [NKMHB06, Section 13.1].5 Thus we assume that the principals have access to
local, but not synchronized clocks.

This also allows the server to be flexible in the sense that it may choose to on the one
hand trust the timestamps in the messages, but on the other hand explicitly accept old

5A simple example includes clocks that are regularly synchronized with time servers, which’s response
can be manipulated if the adversary has control over the network.
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messages, for example, to account for caching or processing of intermediary parties as
introduced in Section 2.3.1.1.

Note that naturally, the protocols we analyze are limited in the sense that if the asyn-
chronism between the clocks of the protocols’ parties is “too large”, messages may get
rejected. But by making the assumption that the principals’ clocks are not synchronized
at all, we can show that no security threat arises from any possible asynchronism.

Also note that later on, we make the assumption that the clocks of the principals are
at least monotonous, i. e., the adversary is only able to increase the value of a princi-
pal’s clock, not decrease it. In Section 3.5.2.1, some insights are given as to why this
assumption is necessary and how one could even restrict the assumption to principals
which act as a server.

2.3.2.2. Long-Term, but Limited Memory

To protect against replay attacks, it seems necessary to assume that the server has access
to long-term memory. This allows a simple security mechanism:

Each client that wants to initiate a protocol session randomly chooses a message id that
serves as a nonce and that is included in the request message. The server then stores all
message id’s it receives and thus can reject messages that arrive more than once.

But in this simple way, the server would have to store all message id’s it has ever re-
ceived, which is highly impractical. Therefore, we model the restriction that the server
should not be forced to store all message id’s by limiting the memory available to the
servers. To this end, we later introduce the capacity of a server.

Our protocols then describe how to store as many message id’s as the capacity allows,
but not more, by using the timestamps included the messages to further restrict the set
of messages that a server accepts at any given time.

2.3.2.3. Shared Access to Signature Keys

We assume that we do not have exclusive access to the keys used for digital signatures
in our protocols, but that instead access to the keys is shared, e. g., by different applica-
tions on one machine.

This has the following background: A signature key that is used to authenticate the
message of our protocols may also be used, e. g., to authenticate parts of the payloads.
For example, if a request contains parts that the server does not process itself, but that
are forwarded to third parties, these parts may also have to be authenticated.6 As man-
aging multiple keys may be complicated or expensive, the client should be able to sign
parts of the payload with the same signature key that is also used to sign the whole

6A simple example is a request message that orders some goods from a merchant and that also contains
a part that instructs a bank to transfer money from the client’s account to the merchant. Both the
order itself as well as the payment instructions should be authenticated, and the merchant should be
able to extract the authenticated payment instructions from the message. Now, signing the payment
instruction and then including the signed payment instruction in the order message, which itself gets
signed as a whole later on, allows the merchant to extract the signed payment instructions.



33

message. The same may apply to servers that use their keys to not only sign messages
of our protocols, but multiple protocols.

We model this shared access by providing access to the signature keys used to sign
messages, but the access is restricted in that it is not allowed to sign bit strings that
represent protocol messages. Otherwise, no security could be guaranteed.

See [BG05] for some further notes on shared access to signature keys.

2.3.2.4. Asymmetric Access to Methods for Authentication

In addition to two protocols using digital signatures for authentication, we also ana-
lyze a protocol that for authentication partially relies on passwords instead of digital
signatures: We assume that servers use digital signatures to authenticate their mes-
sages, whereas clients use passwords for authentication, the reasons are explained in
this section.

While digital signature schemes provide a high level of security, they also come with
a price: For clients that want to use a service on the internet offered by some server,
generating and managing a signature key pair is more complicated than choosing and
managing a password. For example, one has to securely store the private key, making it
less mobile than a password, which can simply be entered at any machine. In addition,
it is usually not feasible for clients to go through the (costly and technically demanding)
process of obtaining a certificate for a public-key infrastructure to prove the client’s
identity.

In contrast, a password is easy to securely transfer using secondary media—for ex-
ample, the operator of a server can send letters to its users containing (short) printed
passwords (which are easier to type for users than long cryptographic keys). From this
and other reasons, many online services let their clients authenticate themselves using
passwords.

For servers, the situation is different: If a client connects to a server and expects it
to authenticate itself, then the client often does not want to manually manage a list of
trusted servers or even manually check the identity of a server.

Instead, one usually expect servers to authenticate themselves using means that can
be easily checked automatically by any user. As the operator of a server is usually able
to obtain a certificate in a public-key infrastructure, e. g., for its domain name; this is a
widely-used approach for online services.

2.4. Protocol Classes

We now introduce three different classes of protocols, i. e., we informally define three
different security goals for secure two-round protocols:

1. Signature-Authenticated Two-Round Message Exchange (SA2ME),

2. Confidential Signature-Authenticated Two-Round Message Exchange (CSA2ME),
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3. Password-Authenticated Two-Round Message Exchange (PA2ME).

We use these informally defined protocol classes throughout the thesis, and we refer
to the set of all three classes by Secure Two-Round Message Exchange (S2ME).

We remark at this point that it would make sense to define a fourth class, CPA2ME,
which combines the attributes of confidentiality as in CSA2ME and password-based
authentication as in PA2ME. A protocol for this class would be useful in practice in
situations where both confidentiality and password-based authentication are necessary
(the latter, e. g., due to reasons mentioned in Section 2.3.2.4).

We do not analyze this class nor propose a protocol in this work, as we do not think
that this would give new insights into aspects that are not already mentioned when
analyzing CSA2ME and PA2ME. Nevertheless, we believe that a protocol for this class
is possible along the lines of the protocols proposed below for CSA2ME and PA2ME,
and we note that our ideal functionality proposed in Section 4.2 is parameterized in a
way that would allow us to capture this class.

2.4.1. Signature-Authenticated Two-Round Message Exchange

The first class, Signature-Authenticated Two-Round Message Exchange (SA2ME), achieves
authentication by using digital signatures. We assume that all parties, i. e., clients and
servers, have access to signature keys as well as to a public key infrastructure etc. that
allows them to check authenticity of a message based on a signature on that message.

This is the protocol class introduced and analyzed in [KSW10,KSW09a] and also ana-
lyzed in [KSW09b,KSW09c], where we refer to this class as “Two-Round Authenticated
Message Exchange”, or 2AMEX in short.

2.4.2. Confidential Signature-Authenticated Two-Round Message Exchange

The second class is called Confidential Signature-Authenticated Two-Round Message Ex-
change (CSA2ME) and achieves authentication by using digital signatures as in the first
class, but adds confidentiality of both the request and the response payload as a secu-
rity goal. We assume that clients have access to keys of the servers for an asymmetric
encryption scheme, for example, through the same public key infrastructure that is also
used for the signature keys.

We stress that only the payload is kept confidential and not, for example, the sender
or receiver of the message (which would, e. g., lead to problems when routing mes-
sages). In addition, the protocols usually still leak information about the payloads,
e. g., their lengths; see Section 4.3.1.4.

2.4.3. Password-Authenticated Two-Round Message Exchange

The third class, Password-Authenticated Two-Round Message Exchange (PA2ME), achieves
authentication by using passwords for authenticating clients to the servers and digi-
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tal signatures for authenticating servers to the clients; this asymmetry is explained in
Section 2.3.2.4. Thus, we assume that

• clients have a password (possibly different one for each server they want to con-
nect to),

• servers have a list of clients and their passwords,

• servers have signature keys, and

• clients have access to a public key infrastructure that allows them to check authen-
ticity of a message received from a server based on a signature on that message.

Naturally, the security guarantees for (short, memorable) passwords are weaker than
for signatures-based authentication, see Sections 2.1.3.6 and 4.2.2 for some remarks.
Nevertheless, password-based authentication is widely used in practice.

2.5. Proposed Protocols

In this section, we informally describe our protocols called SA2ME-1, CSA2ME-1, and
PA2ME-1 for the three above-mentioned protocol classes.

2.5.1. Signature-Authenticated Two-Round Message Exchange

In SA2ME-1, a protocol for the SA2ME protocol class, a signature-authenticated mes-
sage exchange between a client with identity c and a server with identity s works as
follows.

1. a) c is asked by a user to send the request pc.
b) c sends {(From : c, To : s, MsgID : r, Time : t, Body : pc)}sksig

c
to s.

c) s checks whether the message is admissible and if not, stops.
d) s forwards the request (r, pc) to the addressed service.

2. a) s receives a response (r, ps) from the service.
b) s checks whether the response is admissible and if not, stops.
c) s sends {(From : s, To : c, Ref : r, Body : ps)}sksig

s
to c.

d) c checks whether the message is admissible and if not, stops.
e) c forwards the response ps to the user.

Here, r is a randomly chosen message id which is also used as a handle by the server
(see steps 1. d) and 2. a)), t is the local time of the client, pc is the payload the client
sends, ps is the payload the server returns. Repeating the message id of the request
allows the client to verify that ps is indeed a response to the request pc.

The interesting parts are steps 1. c) and 2. b). We assume that there is a constant
caps > 0, the so-called capacity of the server, and a constant tol+s that indicates its tol-
erance with respect to inaccurate clocks. At all times the server keeps a time tmin and a
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finite set L of triples (t, r, c) of pending and handled requests. At the beginning or after
a reset, tmin is set to ts + tol+s , where ts denotes the local time of the server, and L is set
to the empty set.

Step 1. c) Upon receiving a message as above, s rejects if (t′, r, c′) ∈ L for some t′ and
c′ or if t /∈

[
tmin + 1, ts + tol+s

]
, and otherwise proceeds as follows: If L contains less

than caps elements, it inserts (t, r, c) into L. If L contains at least caps, the server deletes
all tuples containing the oldest timestamp from L, until L contains less than caps tuples.
Then it sets tmin to the timestamp contained in the last tuple deleted from L, and finally
inserts (t, r, c) into L.

Step 2. b) When asked to send a payload ps with message handle r, the server rejects if
there is no triple (t, r, c) ∈ L with c 6= ε. If it does not reject, it updates L by overwriting c
with ε in the tuple (t, r, c) to ensure that the service cannot respond to the same message
twice.

Note that this is the protocol introduced in [KSW10, KSW09a] and also analyzed
in [KSW09b, KSW09c], where we referred to this protocol as 2AMEX-1.

We also note that in Chapter 4, we slightly modify the protocol to allow for a more
uniform modeling (compare CSA2ME and PA2ME below): The server does not pass on
r to the service, but a randomly chosen session id sids, which is also stored in L together
with t, r, and c; see Section 4.6.5 for some further remarks.

2.5.2. Confidential Signature-Authenticated Two-Round Message Exchange

CSA2ME-1 is a protocol for the protocol class CSA2ME. A confidential and signature-
authenticated message exchange between a client c and a server s works as follows,
where most of the variables are the same as for SA2ME-1 (we point out the differences
below).

1. a) c is asked by a user to send the request pc.
b) c sends {(From : c, To : s, MsgID : r, Time : t, Key : 〈k〉ae

pkae
s

, Body : 〈pc〉sek )}sksig
c

to s.
c) s checks whether the message is admissible and if not, stops.
d) s forwards the request (sids, pc) to the addressed service.

2. a) s receives a response (sids, ps) from the service.
b) s checks whether the response is admissible and if not, stops.
c) s sends {(From : s, To : c, Ref : r, Body : 〈ps〉sek )}sksig

s
to c.

d) c checks whether the message is admissible and if not, stops.
e) c forwards the response ps to the user.

Most of the variables are the same as for SA2ME-1. Here, sids is a randomly chosen
nonce and k is a randomly generated key for the symmetric encryption scheme; thus,
we use hybrid encryption as explained in Section 2.1.3.4 to encrypt the request payload.
The response is encrypted using the same key k as for the request. The processing is as
above, but in addition, sids and k are stored in the set L.
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2.5.3. Password-Authenticated Two-Round Message Exchange

For the protocol class PA2ME, we informally define the protocol PA2ME-1, in which
a password-authenticated message exchange between client c and server s runs as fol-
lows:

1. a) c is asked by a user to send the request pc using password pw.
b) c computes m′c = (From : c, To : s, MsgID : H(r), Time : t, Body : pc)

and sends mc = (m′c, 〈(SecMsgID : r, Pass : pw, MsgHash : H(m′c))〉ae
pkae

s
) to s.

c) s checks whether the message is admissible and if not, stops.
d) s forwards the request (sids, pc) to the addressed service.

2. a) s receives a response (sids, ps) from the service.
b) s checks whether the response is admissible and if not, stops.
c) s sends {(From : s, To : c, Ref : H(r), Body : ps)}sksig

s
to c.

d) c checks whether the message is admissible and if not, stops.
e) c forwards the response ps to the user.

Again, most of the variables and processing is as above. Here, H is a cryptographic
hash function.

The client does not chose a random message id, but instead randomly chooses a secret
message id r and uses the hash value H(r) as the (public) message id. The request is not
signed by the client; instead, a token containing the hash value of the message, the
client’s password, and the secret message id r is encrypted using the public key of the
server.

Note that instead of the password we could also send a hash value of the password
etc. if the password verification mechanism on the server allows this.





3. Trace-Based Analysis

The first framework that we use to analyze one of the three protocols, SA2ME-1, is
an extension and adaptation of the framework for entity authentication introduced by
Bellare and Rogaway in [BR93a]. In this chapter, we adapt the original framework and
then perform a concrete computational security analysis of SA2ME-1 in our adapted
model.

In Section 3.1, we briefly introduce the original Bellare–Rogaway framework [BR93a]
for reference. Then we introduce our model for analyzing SA2ME protocols in Sec-
tion 3.2, after which, in Section 3.3, we are able to formally define SA2ME-1 as a pro-
tocol in our model. We then give correctness and security definitions, see Section 3.4,
and prove SA2ME-1 secure and correct in Section 3.5. Finally, we end the chapter with
some practical considerations on the choice of parameters in Section 3.6.

Most of the results in this chapter were published in [KSW10, KSW09a].

3.1. The Bellare–Rogaway Framework

In this section, we give a brief introduction into the framework proposed by Bellare
and Rogaway in [BR93a], which provides a way to formally specify protocols for entity
authentication and key distribution and prove their security and correctness.

In this framework, all communication between the parties is under the control of
an adversary, i. e., the adversary has control over an unbounded number of sessions, to
which it can send messages and from which it receives all of their outgoing messages. A
session is denoted with Πs

i,j, where i is the party running the session with local session
id s, and j is the intended communication partner.

For each session, the communication history is recorded in a trace, which is the se-
quence of incoming and outgoing messages. Informally, two sessions Πs

i,j and Πt
j,i have

matching conversations if the messages sent by each one are exactly those received by the
other (except that the final message is allowed to get lost, which models that the sender
of the last message in a protocol can never be certain whether the message is received).
A protocol is regarded to be secure if the only way that an adversary can get a party to
accept the run of a protocol is by faithfully relaying messages.

Protocols. The protocols in this framework are specified by an efficiently computable
function Π, which is called each time that a principal i receives a message min and is
supposed to respond to that message. The function has the following input parameters:
the security parameter 1η , the identity of the sender and the receiver i, j ∈ I ⊆ {0, 1}η ,
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the private information of the sender a ∈ {0, 1}∗, the message trace κ ∈ {0, 1}∗ (includ-
ing min), and a random bit string r ∈ {0, 1}∞.

In the above, I is a set of identities which define the players of the protocol, while
the identity of the adversary, A, is not contained in this set. The private information
a is generated by a long-lived key generator G, described below. The message trace κ
represents the sequence of messages transmitted and received by i so far in this run of
the protocol, and min is appended to that set before calling Π.

The return value of Π(1η , i, j, a, κ, r) is a tuple (mout, δ, α) with the response mes-
sage mout ∈ {0, 1}∗ ∪ {⊥}, the decision δ ∈ {A, R, ∗}, and the private output α ∈
{0, 1}∗ ∪ {⊥} (see below). Here, mout is the message to send out, where ⊥ stands for
“no message”. There are three possible values for the decision δ: A for “accept” or R for
“reject” denote that the principal believes that the authentication has been successfully
completed or that is has failed, respectively; finally ∗ denotes that the principal has not
reached a decision yet. It is convenient to assume that as soon as δ = A, the values of δ
and α do not change for subsequent calls of the protocol.

The LL-Key Generator G. The long-lived key generator G is a polynomial-time algo-
rithm that computes the private information of the parties, which may for instance be
used for distributing a shared key or modeling public information accessible by all par-
ties. As input, the algorithm takes the security parameter 1η , the identity of a party
or the adversary (i ∈ I ∪ {A}), and a random bit string rG ∈ {0, 1}∞. The output of
G(1η , i, rG) is handed to party i.

The Experiment. To define the success of an adversary, an experiment is used that mod-
els a typical protocol execution. In a setup phase, random bit strings rs

i,j are chosen for
all sessions, the long-lived key generator is used to generate private information ai for
all identities i ∈ I ∪ {A}, and the private information aA is given to the adversary.

The adversary may now ask queries of the form (i, j, s, min) to a session Πs
i,j. Then,

min is appended to κs
i,j, the protocol computes (mout, δ, α) = Π(1η , i, j, ai, κs

i,j, rs
i,j), and

(mout, δ) is output to the adversary. Note that the session id s is not given to Π in the
input parameters, i. e., the protocol itself has to use some mechanism to distinguish
different runs of the protocol. The experiment is run until the adversary terminates.

Matching Conversations. After the run of the experiment, the conversation that the
session Πs

i,j had with the adversary is denoted by Ks
i,j, which is a sequence of tuples of

the form (τ, min, mout) denoting that i received a message min and responded with mout
at step τ. For a protocol with 2n + 1 messages for some n ∈ N the session Πs

i,j has a
matching conversation with Πt

j,i if there exists τ0 < τ1 < . . . < τ2n such that

Ks
i,j starts with (τ0, ε, m0), (τ2, m1, m2), . . . , (τ2n, m2n−1, m2n) and (3.1)

Kt
j,i starts with (τ1, m0, m1), (τ3, m2, m3), . . . , (τ2n−1, m2n−2, m2n−1) (3.2)
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The other direction is similar: Πt
j,i has a matching conversation with Πs

i,j if there exists
τ0 < τ1 < . . . < τ2n such that Ks

i,j starts as in (3.1) and

Kt
j,i starts with (τ1, m0, m1), (τ3, m2, m3), . . . , (τ2n+1, m2n, ∗) . (3.3)

The case for protocols with an even number of messages (greater than two) is analo-
gously.

Mutual Authentication and Authenticated Key Exchange. A protocol Π is a correct and
secure mutual authentication protocol if for any polynomial-time adversary the following
properties hold:

1. If any two sessions Πs
i,j and Πt

j,i have matching conversations, then both sessions
accept (correctness).

2. The probability that a session Πs
i,j accepts without having a matching conversa-

tion with some session Πt
j,i is negligible (security).

The case of authenticated key exchange extends the above-mentioned mutual au-
thentication by using the private output α of Π as the key that is generated or exchanged
in this run of the protocol. Therefore, if two sessions Πs

i,j and Πt
j,i have matching con-

versations, they should output the same value α, but the adversary should not be able
to get any information about α. A formal definition of correctness and security of such
protocols can be found in [BR93a].

Note that Shoup [Sho99] corrects a serious flaw in the authenticated key exchange
modeling of [BR93a], but this is not relevant for what follows as that is based on the
modeling of mutual authentication in [BR93a].

3.2. Protocol Model

In this section we define the protocol model that is later used to analyze SA2ME pro-
tocols and that is based on the framework introduced in the previous section. In some
footnotes, we point out differences and similarities to the model in Chapter 4.

3.2.1. Prerequisites

As shown in Section 2.3.2.1, in a bounded memory setting time is a way to achieve
resistance against replay attacks. In this chapter, we use ltime-bit numbers as time values
for an arbitrary fixed ltime ∈ N. In this chapter, we also assume there is an arbitrary
fixed identifier set IDs ⊆ {0, 1}lID for an arbitrary fixed lID ∈ N whose elements are
called identifiers. We use them to identify principals, which can act both as clients and
as servers. For the remainder of this chapter, we assume a fixed signature scheme Ω =
(G, S, V) as defined in Section 2.1.3.1.
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Figure 3.1.: Message flow in four steps

3.2.2. Clients and Servers

Before defining clients and servers formally, we describe how they are supposed to
operate. An intended run of a SA2ME protocol between a client c ∈ IDs and a server
s ∈ IDs is initiated by the client-side environment which wants to call some service on
the server.7 The protocol run consists of two rounds, request and response, modeled by
four steps as illustrated in Figure 3.1:

client send The client is given a request payload pc by the environment which is a re-
quest to the service provided by the server s. The client encapsulates the payload,
adding security data etc., and sends the resulting message mc over the network.

server receive The server receives the message mc from the network, accepts the mes-
sage and unwraps it; passing the payload pc, a handle h, and the identified sender
of the incoming message c to the service.

server send The server is provided with a response payload ps and the handle h by
the service (which chose ps as a response to the request payload pc). The server
encapsulates the payload and sends a message, ms, over the network.

client receive Finally, the client receives the message ms from the network and returns
ps to the environment.

To give the strongest security guarantees possible, the roles of the environment, the
service, and the network are all played by the adversary in this model8. As the adver-
sary is free to choose any payload both on the client as on the server side, the security

7Note that in this chapter, we distinguish between the environment on the client side and the service on
the server side, whereas in Chapter 4, both roles are played by one machine called environment.

8Note that in Chapter 4, these three parties are also able to work together.
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input parameters client Γ server Σ
instruction α ∈ {Send, Receive} α ∈ {Send, Receive, Reset}
identity c ∈ IDs s ∈ IDs
partner’s identity s ∈ IDs
public keys pksig

IDs pksig
IDs

private key sksig
c sksig

s
local time t ∈ {0, 1}ltime t ∈ {0, 1}ltime

payload or message p or m ∈ {0, 1}∗ p or m ∈ {0, 1}∗
message handle h ∈ {0, 1}∗
local state µ µ

output values client Γ server Σ
message or payload m or p ∈ {0, 1}∗ m or p ∈ {0, 1}∗
decision δ ∈ {A, R} δ ∈ {A, R}
assumed partner c ∈ IDs∪ {ε}
message handle h ∈ {0, 1}∗
local state µ′ µ′

Table 3.1.: Input parameters and output values of the algorithms Γ and Σ

guarantees we provide in this chapter apply to any protocol or service which uses any
secure SA2ME protocol.9

Formally, we define client and server algorithms to be probabilistic algorithms with
input parameters and output values as specified in Table 3.1 (and explained in the next
section) and adhering to the restrictions defined in Section 3.2.2.2.

3.2.2.1. Input Parameters and Output Values

First, the client algorithm gets an instruction which can either be Send or Receive.
Second, the client algorithm is provided with the identifier of the principal it is run-
ning for, c ∈ IDs, and with the identifier of the server it is supposed to be talking
to, s ∈ IDs. Third, the client algorithm is provided with the family of public keys,
pksig

IDs = {pksig
a }a∈IDs, and its own private key sksig

c . Fourth, it gets the local time
t ∈ {0, 1}ltime . Fifth, the client is provided with the payload p ∈ {0, 1}∗ it is supposed to
send to the server, or with a message m ∈ {0, 1}∗ obtained from the network. Finally,
a client may process multiple requests, one after the other, which means is has a his-
tory or, in other words, a state. We model this by local state information that the client
algorithm is provided with—the parameter µ ∈ {0, 1}∗, initialized with ε.

For the server algorithm, the situation is similar. But a server can receive input from
various clients, so it is not provided with a particular client identifier. Rather, the server

9This is a very simple form of composability, whereas in the framework used in Chapter 4, composability
is formally defined.
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has to extract this from the message it receives and store it in its memory to be able
to send a response later on. When asked to respond to a specific message, the server
is also provided by the service with a message handle identifying which message the
service wants to respond to. Also, there is an additional Reset instruction for the server,
where the local state and the message given to the server is ε.

Next, we explain the output values for the server when receiving a message mc. First,
the server algorithm extracts the payload p ∈ {0, 1}∗ carried by mc and returns it.
Second, the server algorithm reports its decision δ ∈ {A, R}: A (accept) means that the
command was executed successfully, while R (reject) indicates an error (which can be
a failed authentication or another protocol error). Third, the server algorithm outputs
the identity of the client that assumably sent the message; when the decision is R, the
dummy value ε is used. Fourth, the server outputs a message handle h ∈ {0, 1}∗ which
is later used by the service to respond to mc. Finally, the server outputs local state,
which it is provided with the next time it is called, unless it is reset.

If the server is asked to send a response payload ps, the output syntax is similar, but
in case no error occurs when responding (see below), the server outputs the response
message ms in the first component, the identity of the receiver in the third component,
and ε instead of a message handle in the fourth component.

Clients have the same output syntax except that there is no need to output a message
handle or the assumed partner, because the latter is contained in the input parameters
of the algorithm.

3.2.2.2. Execution Orders

There are only certain sequences of instructions to client and server algorithms that
make sense: We require the client to (i) only accept the first Send request it receives,
(ii) accept at most one Receive request, and (iii) accept a Receive request only after it
accepted a Send request. The server is required to accept a Send request with message
handle h if there is a previous Receive request it accepted earlier with the same message
handle h, and if between these both requests it accepted no other request.

This can be formalized as follows, where we start with the client. Let c, s be identi-
fiers, let µ0 = ε, let {αj}j∈N be a sequence of instructions with αj ∈ {Send, Receive}, let
{tj}j∈N be a monotonically increasing sequence of timestamps and {bj}j∈N a sequence
of bit strings. Assume that for all i ∈N we have

Γ(αi, c, s, pksig
IDs, sksig

c , ti, bi, µi) = (b′i , δi, µi+1) , (3.4)

then we require that (i) only for the smallest i1 ∈ N with αi1 = Send we have δi1 = A,
if such an i1 exists; (ii) there is at most one i2 ∈ N with αi2 = Receive and δi2 = A; and
(iii) if there is i2 as in (ii), then there is an i1 as in (i) with i1 < i2.

For the server, let s, {tj}j∈N and {bj}j∈N be as above, let {hj}j∈N be a sequence of
message handles, let {αj}j∈N with αj ∈ {Send, Receive, Reset} be a sequence of instruc-
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tions, and let µ′−1 = ε. If for all i ∈N we have

Σ(αi, s, pksig
IDs, sksig

s , ti, bi, hi, µi) = (b′i , δi, ci, h′i, µ′i) (3.5)

with µi =

{
ε if αi = Reset
µ′i−1 otherwise,

(3.6)

then we require that for each pair i1, i3 ∈ N with i1 < i3, αi1 = Receive, δi1 = A,
αi3 = Send, and h′i1 = hi3 , that δi3 = A if there is no i2 ∈N with i1 < i2 < i3 and δi2 = A.

3.2.2.3. Message Equivalence

We now define an equivalence relation ≡ on messages: Intuitively, two messages are
equivalent if the output of client and server algorithms is the same no matter which
of the two messages we give to the algorithm. This relation is used in the security
definition below.

Formally, fix a client and a server algorithm, Γ and Σ, respectively. Two bit strings
b1, b2 are equivalent, denoted by b1 ≡ b2, if the following conditions hold for all instruc-
tions α ∈ {Send, Receive}, identifiers c, s, timestamp t, and bit strings µ and h:

Γ(α, c, s, pksig
IDs, sksig

c , t, b1, µ) = Γ(α, c, s, pksig
IDs, sksig

c , t, b2, µ) , (3.7)

Σ(α, s, pksig
IDs, sksig

s , t, b1, h, µ) = Σ(α, s, pksig
IDs, sksig

s , t, b2, h, µ) , (3.8)

if in both equations, the call of the algorithm on the left side uses the same random bits
as the call of the algorithm on the right side.

3.2.3. Protocols, the Adversary, and the Experiment

We now give the formal definition of a Signature-Authenticated Two-Round Message Ex-
change (SA2ME) protocol in this model. Such a protocol is a tuple Π = (Γ, Σ, τ, ϕ, E∗)
where Γ and Σ are the client and server algorithms, τ and ϕ are the time and freshness
functions (see below), and E∗ is an exception set as defined below.

• A time function is a function that assigns to each client message mc a time value
τ(mc). The intended interpretation is that τ(mc) is the time at which mc was
supposedly created. The time function is used to phrase the correctness condition
(see Section 3.4.1).

• A freshness function is a function which, for an identity s, state information µs,
and a time ts, specifies a freshness interval ϕ(s, µs, ts). This is the interval of time
values the server s considers fresh, i. e., for the server to consider a message fresh
the time value of that message has to be in the server’s freshness interval.

• An exception set is a set of bit strings called exceptions which is recognizable in
polynomial time. This is the set of bit strings which the signature oracle (see
below) refuses to sign for the adversary.
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We next describe how all these components work together. As in [BR93a], this is done
by defining an appropriate notion of experiment, in which the protocol is running with
an adversary. The latter is simply an arbitrary probabilistic algorithm. The experiment
proceeds as follows (see Table 3.2 for details):

We assume that at the beginning of the experiment, the adversary specifies a set of
identities A ⊆ IDs, which has to include both the identities of oracles the adversary
calls and the identities that occur in messages.

For every principal s ∈ IDs a server instance Σs runs under the identity s. For every
pair of principals c, s ∈ IDs arbitrarily many client instances Γi

c,s can run where c acts as a
client and s as a server, and where i is a natural number. We let the adversary control all
these instances, that is, the adversary can decide when to call such an instance, which
payloads to choose, which local times are used, etc.

The experiment then works in steps, where in each step the adversary can perform an
action (Send, Receive, Reset, Sign, Corrupt, Time), for which it provides the parameters
under its control and receives the output values:

• The Send, Receive, and Reset instructions are passed to the client and server al-
gorithms by the experiment, adding the necessary parameters and logging the
output.

• The Time instruction is used to set the local clock of a principal, the only restriction
is that the value of the local clock cannot be decreased by the adversary, i. e., each
principal’s clock is monotone.

• The Sign and Corrupt instructions are handled by a signature oracle, which—by
abuse of notation—is denoted by the same symbol as the signature scheme, Ω.
The adversary can use these two instructions to sign bit strings and corrupt a
principal’s key, respectively. Signing bit strings is useful, e. g., while constructing
the payload for a Send instruction, see Section 2.3.2.3. But clearly, we cannot allow
the adversary to use the signature oracle to sign every bit string. Therefore, the
signature oracle refuses to sign bit strings belonging to the exception set specified
in the protocol description.

In the experiment traces are recorded for each instance, which allow us to define
correctness and security of a protocol, see Section 3.4. A trace is a sequence of tuples
containing a step number and the observable action of the instance in the corresponding
step, i. e., the local time t, the payloads and messages received or sent by the instance in
this step, as well as the decision of the instance (accept or reject), and finally, for server
entries, the identity of the client that the server believes it is communicating with and
the message handle.

Formally, the experiment ExpΠ,A for an adversary A against a SA2ME protocol Π
proceeds as described in Table 3.2 where we use v R←−A to describe assigning the output
of the (randomized) algorithm A to the variable v.
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1. Select identities, generate keys, and initialize clocks.
Let the adversary specify a set A ⊆ IDs, and for each a ∈ A:

a) Let (pksig
a , sksig

a ) R←−G().
b) Send (a, pksig

a ) to the adversary.
c) Let ta ←− 0.

2. Initialize step counter and states and traces of clients and server.
Let n←− 0.
For each i ∈N and c, s ∈ IDs, let tri

c,s ←− ε and µi
c,s ←− ε.

For each s ∈ IDs, let trs ←− ε and µs ←− ε.
3. Run the adversary step by step.

Run the adversary, and in each step first increase the counter n and then call client, server
or signature algorithm as follows according to the adversary’s selection:
– Γi

c,s : Send(p)
(i) (m, δ, µ) R←−Γ(Send, c, s, pksig

IDs, sksig
c , tc, p, µi

c,s),
(ii) µi

c,s ←− µ,
(iii) tri

c,s ←− tri
c,s · (n, Send, tc, p, m, δ),

(iv) return (m, δ, µ) to the adversary.
– Σs : Receive(m)

(i) (p, δ, c, h, µ) R←−Σ(Receive, s, pksig
IDs, sksig

s , ts, m, ε, µs),
(ii) µs ←− µ,

(iii) trs ←− trs · (n, Receive, ts, p, m, δ, c, h),
(iv) return (p, δ, c, h, µ) to the adversary.

– Σs : Send(p, h)
(i) (m, δ, c, h′, µ) R←−Σ(Send, s, pksig

IDs, sksig
s , ts, p, h, µs),

(ii) µs ←− µ,
(iii) trs ←− trs · (n, Send, ts, p, m, δ, c, h),
(iv) return (m, δ, c, h′, µ) to the adversary.

– Γi
c,s : Receive(m)

(i) (p, δ, µ) R←−Γ(Receive, c, s, pksig
IDs, sksig

c , tc, m, µi
c,s),

(ii) µi
c,s ←− µ,

(iii) tri
c,s ←− tri

c,s · (n, Receive, tc, p, m, δ),
(iv) return (p, δ, µ) to the adversary.

– Σs : Reset()
(i) (m, δ, c, h, µ) R←−Σ(Reset, s, pksig

IDs, sksig
s , ts, ε, ε, ε),

(ii) µs ←− µ,
(iii) trs ←− trs · (n, Reset, ts, ε, ε, A, ε, ε),
(iv) return (m, δ, c, h, µ) to the adversary.

– Ω : Corrupt(a)
(i) trs ←− trs · (n, Corrupt, ts, ε, ε, A, ε, ε),

(ii) return sksig
a to the adversary.

– Ω : Sign(a, p)
(i) If p /∈ E∗, return {p}

sksig
a

, otherwise return ε to the adversary.

– Time(a, t)
(i) ta ←− max(ta, t),

(ii) return ta to the adversary.

Table 3.2.: Experiment ExpΠ,A for adversary A against protocol Π = (Γ, Σ, τ, ϕ, E∗).
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3.3. The Protocol SA2ME-1

In this section, we formally define the protocol SA2ME-1 described in Section 2.5.1
within the formal framework developed in this chapter, and comment on various as-
pects of it.

3.3.1. Formal Definition of the Protocol

To formally define SA2ME-1, we have to specify the client and server algorithms, the
time and freshness functions, and the exceptions set. We also fix some lnonce ∈N as the
length of the message id’s used in the protocol.

3.3.1.1. Server Algorithm, Freshness Function, and Time Function

Let s be the identity that the server algorithm Σ is called with. As local state µ, the
server uses a tuple (tmin, L) consisting of a variable tmin holding a single timestamp
and a set L of triples of the form (t, r, c) where t is a timestamp, r is a message id, and c
is an identity.

The freshness function is defined by ϕ(s, (tmin, L), t) = {t′ | tmin + 1 ≤ t′ ≤ t + tol+s }.
The server first checks if it is called with local state ε and if so (i. e. initially and after

each reset), sets tmin to ts + tol+s where ts is the current local time of the server, and sets
L to the empty set. Then the server proceeds according to the instruction.

Upon receiving mc = {(From : c, To : s′, MsgID : r, Time : t, Body : pc)}sksig
c

, with local
state µ = (tmin, L) at local server time ts, the server s performs the following:

1. If one of the following conditions is met, stop and return (ε, R, ε, ε, µ):

a) s′ 6= s,
b) V(mc, pksig

c ) returns false,
c) t /∈ ϕ(s, µ, ts),
d) (t′, r, c′) ∈ L for some t′, c′.

2. While |L| ≥ caps,

a) tmin ←− min{t′ | (t′, r′, c′) ∈ L},
b) L←− {(t′, r′, c′) ∈ L | t′ > tmin}.

3. L←− L ∪ {(t, r, c)}.

4. Return (pc, A, c, r, (tmin, L)).

When asked to send a payload ps with message handle r and state information µ =
(tmin, L), the server algorithm proceeds as follows:

1. Look for (t, r, c) ∈ L with c 6= ε. If no matching triple is found in the set, return
(ε, R, ε, ε, µ).

2. ms ←− {(From : s, To : c, Ref : r, Body : ps)}sksig
s

.
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3. L←− (L \ {(t, r, c)}) ∪ {(t, r, ε)}.

4. Return (ms, A, c, ε, (tmin, L)).

The time function is defined by τ(mc) = t where mc is as above.

3.3.1.2. Client Algorithm

Let c be the client identity that Γ is called with. If the instruction is to send a payload
pc to server s at time t and the local state µ is ε, the algorithm randomly chooses the
message id r R←−{0, 1}lnonce , sets mc = {(From : c, To : s, MsgID : r, Time : t, Body : pc)}sksig

c

and returns (mc, A, r). If requested to send when µ 6= ε, it returns (ε, R, µ).
If the algorithm receives a message ms = {(From : s′, To : c′, Ref : r′, Body : p′s)}sksig

s′

when the local state is µ, it proceeds as follows:

1. If one of the following conditions is met, stop and return (ε, R, µ):

a) |µ| 6= lnonce,
b) s′ 6= s,
c) c′ 6= c,
d) V(ms, pksig

s ) returns false,
e) r′ 6= µ.

2. Return (ps, A, 01+lnonce).

3.3.1.3. Bit String Encodings and Exception Set

Our description above leaves open the actual format of the messages. We assume that
our abstract messages, i. e., messages in the notation used above containing, e. g., tu-
ples or tags like From or Time, are encoded as bit strings in such a way that the individ-
ual components can be retrieved without ambiguity. There may be multiple different
bit strings that encode the same abstract message, we then call the encoded bit string
equivalent.

The set E∗ ⊆ {0, 1}∗ is the set of all bit string encodings of messages of the form
(From : c, To : s, MsgID : r, Time : t, Body : pc) or (From : s, To : c, Ref : r, Body : ps). We as-
sume the bit string representation is such that E∗ is recognizable in polynomial time.

For example, by using a standard encoding for web services, SOAP [ML07,NGM+07,
KMG+07], one can meet the above requirements.

This completes the formal definition of SA2ME-1. Note that it can easily be seen that
the restrictions on execution orders from Section 3.2.2.2 hold. Also, it is easy to see that
our protocol indeed achieves to work with bounded memory:

The size of the state of a server s in SA2ME-1 is bounded by the size of the bit string
representation of (tmin, L), where tmin ∈ {0, 1}ltime is a timestamp and L is a set of caps
many tuples of the form (t, r, c) with t ∈ {0, 1}ltime , r ∈ {0, 1}lnonce and c ∈ {0, 1}lID .
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3.3.2. Comments and Caveats

For a fixed protocol run, we use ta(n) to denote the value of the local clock of principal
a at step n, and µa(n) to denote the local state of the server instance of a before step n.

3.3.2.1. Message Equivalence

Assume that m1 = (m′1, σ1) is a message created by the client or server algorithm of
SA2ME-1 with a valid signature for some public key pksig, i. e.V(m1, pksig) returns true.
It is now easy to see that for SA2ME-1, another bit string m2 is equivalent to m1 as
defined in Section 3.2.2.3 if and only if m2 is of the form (m′2, σ2) where (i) m′2 is a bit
string encoding equivalent to m′1 and (ii) V(m2, pksig) returns true.

Therefore, messages are equivalent if they decode into equal abstract messages and if
they have equal signatures or if they have different, but valid signatures from the same
signature key.

3.3.2.2. Resets

From the specification of SA2ME-1, it is immediate that after a reset there is a delay in
accepted messages: If a reset of a server s happens at a step nr, then the next accepted
message must have a timestamp exceeding ts(nr) + tol+s .

However, such a delay is natural, since for any protocol that resists replay attacks, if
a reset happens at step nr, and n1 < nr < n2, then the intervals ϕ(s, µs(n1), ts(n1)) and
ϕ(s, µs(n2), ts(n2)) must be disjoint. Due to asynchronous clocks, we need the interval
ϕ(s, µs(n), ts(n)) to exceed the time ts(n), therefore rejecting valid messages cannot be
completely avoided.

To illustrate this, assume that a protocol is designed in such a way that immediately
after a reset, i. e., without an increase in the server time, the interval of accepted mes-
sages is not empty, and there is a message m that the server accepts. Then the adversary
can simply reset the server, deliver the message m, and then reset and deliver again,
without ever changing the value of the server clock. Since for the server, the two events
of receiving the message m are indistinguishable, it accepts the message twice.

Therefore, in any secure protocol, the interval ϕ is empty when a reset happened,
as long as the clock of s has not been increased. It easily follows from inspection of
our protocol (as well as from the above reasoning and our later security proof) that in
SA2ME-1 this is the case.

3.3.2.3. Parametrization

Our protocol is parameterized, since lnonce, tol+s , and caps can be chosen freely, and the
latter two can be chosen per server. Although the protocol is later proven correct and
secure for any choice of tol+s and caps, our correctness definition relies on “reasonable”
values for the intervals ϕ. A message m sent by a client c in step n1 and received by a
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server s in step n2 is rejected if tc(n1) = τ(m) /∈ ϕ(s, µs(n2), ts(n2)). By construction of
the protocol, there are two ways in which this can happen:

1. tc(n1) > ts(n2) + tol+s , or

2. tc(n1) ≤ t′min where t′min is the internal variable tmin of party s before step n2.

The first of these issues can occur when the clocks of client and server are asyn-
chronous, which in realistic environments is very likely. To circumvent this problem,
one should choose the constant tol+s large enough to deal with usually occurring time
differences between the local clocks of the principals.

The second case occurs after a reset or if, in step n2, the server s has accepted more
messages with timestamps in the future of tc(n1) than the capacity allows. This can
happen, for instance, due to network properties that slow down the delivery of mes-
sages. Obviously, increasing caps makes this case occur less frequently, in particular, if
the servers would have unbounded memory, it would not occur at all.

3.3.2.4. Responding to old Messages

A protocol is only required to allow the service to respond to the most recently received
and accepted message (see Section 3.2.2.2). But a good protocol should allow the service
to respond to more, i. e. older messages, while still accepting incoming messages. In
our protocol, we can give the following guarantee on how long the service is able to
respond to a message:

Let t be a timestamp and let µ = (tmin, L) be the local state of a server s. Assume that
L already contains n1 tuples whose timestamps are older than t, and let n2 = caps− |L|.
Now if a message m is received and accepted with τ(m) > tmin, the service is able to
respond to m using its message handle as long as the server, after accepting m, does not
accept more than n1 + n2 messages with a timestamp greater than or equal to τ(m).

3.3.2.5. Dishonest Timestamps

In a way, the protocol SA2ME-1 gives the clients an incentive to “lie” in their times-
tamps, since for the clients, it is advantageous to claim a timestamp in the future, as
long as the timestamp does not exceed the sum of the server clock plus its tolerance.

Assume, for example, that the server tolerance tol+s is very large, let’s say 24 hours.
Then a client has an advantage if it adds 24 hours to the timestamp of each message
that it sends to the server s, since its messages most likely are not rejected due to old
timestamps. This has an unwanted effect on the operation of the server: If this client
(or a group of clients acting in the same way) sends many requests to the server, and if
the server does not have enough memory, the value tmin of s will soon be in the future
as well, which leads to the rejection of valid incoming messages.

The consequence of this line of thought is that in practice, it is desirable that the “cen-
ter” of the intervals ϕ should always be the present time, so that the most successful
strategy for the clients is to use truthful timestamps. In Section 3.6, we explain how this
can be achieved.
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3.4. Correctness and Security Definitions

We now define what it means that a protocol is correct and secure in our model.
Again, for a fixed execution of the experiment, an identifier s and a natural number

n, we use µs(n) to denote the content of the local state µs before the nth step. We say
that for a principal a ∈ IDs the principal’s key is corrupted in the experiment at step
n, if there is a step number n′ ≤ n such that in step n′, the adversary performed a
Ω : Corrupt(a) query. From now on, with tri

c,s and trs, we refer to the corresponding
traces after running the experiment.

3.4.1. Correctness Definition

Informally, our notion of correctness requires that if messages are delivered as intended
by the network (i. e., the adversary), then all parties accept (given that the messages are
considered fresh by the servers), the sender of each message is correctly determined,
and the payloads are delivered correctly.

Formally, we say that an adversary A is benign if it only delivers messages that were
obtained from a client or server instance, and delivers a message at most once to every
instance. This models a situation in which arbitrary payload is sent over a network
in which messages may get delayed or lost, all messages can be read by anybody, and
servers can loose local state information, but no message is altered, no false messages
are introduced, and no replay attacks are attempted.

A SA2ME protocol Π is (n, ε)-correct if for any benign adversaryA that starts at most
n many client sessions, and any c, s ∈ IDs the following conditions are met:

1. If (n1, Send, t1, pc, mc, A) ∈ tri
c,s, (n2, Receive, t2, p′c, mc, δs, c′, h) ∈ trs, and τ(mc) ∈

ϕ(s, µs(n2), t2), then c′ = c, pc = p′c, and δs = A, with probability at least 1− ε.

2. If, additionally, (n3, Send, t3, ps, ms, A, c′, h) ∈ trs and (n4, Receive, t4, p′s, ms, δc) ∈
tri

c,s with n2 < n3 and n1 < n4, but with no (n′, . . . , A, . . .) ∈ trs such that n2 <
n′ < n3, then ps = p′s and δc = A.

Note that this definition leaves a loop hole for “correct”, but utterly useless protocols:
The freshness function ϕ is part of the specification, and a protocol only has to be correct
with regard to this choice of ϕ. Hence a protocol in which ϕ always returns the empty
interval is not required to accept any messages. For protocols to be useful in practice, it
is desirable to have a large freshness interval, see Section 3.6 for a discussion.

Similarly, this definition only guarantees that the service can respond to the last mes-
sage that the server received and accepted. Using message handles, a good protocol
should allow the service to respond to any of the recently received messages, see Sec-
tion 3.3.2.4 for some notes on this for SA2ME-1.

The reason why we only require the server to accept with high probability is that
we allow randomness in our algorithms, and therefore collisions cannot be ruled out
completely.
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3.4.2. Security Definition

For the security definition, we need the notion of running time of algorithms. We use a
probabilistic RAM model based on [CR73], in which arbitrary registers can be accessed
in constant time. We also adopt the convention that “time” refers to the actual run-
ning time plus the size of the code (relative to some fixed programming language), see,
e. g., [BDJR97]. Oracle queries are answered in unit time.

We assume that the running time of the algorithms of the signature scheme is as
follows: Generating a key pair takes time tG, and signing or verifying a bit-string with
l bits takes time tS(l) or tV(l), respectively.

We only need to look at the acceptance trace of a client instance Γi
c,s, which is the sub-

sequence of all steps in the trace tri
c,s of the form (n, . . . , A). We also say that an instance

accepts at step n if there is an entry of the form (n, . . . , A) or (n, . . . , A, . . .) in its trace.

We now define when a protocol is called secure by defining a function which matches
client and server traces. A partner function is a partial map f : IDs× IDs×N → N.
Informally, for each client instance Γi

c,s, the function f points to a step (identified by
step counter n) in which the server accepts the message sent from c to s in session i, if
there is such a step.

Depending on the result of the experiment, we then define the event NoMatchΠ,A,
which is intended to model the event that the adversary A has “broken” the run of the
experiment.

If a “matching” partner function (see below) can be defined, then the experiment
was successful in the sense that the adversary did not compromise authenticity of the
message exchange. More formally, matching w. r. t. a given partner function is defined
as follows.

1. A trace tri
c,s of a client c matches the server trace trs of the server s w. r. t. a given

partner function f if the acceptance trace of Γi
c,s is of the form (n1, Send, t1, pc, mc,

A)(n4, Receive, t4, ps, ms, A) and there are timestamps t2, t3, step numbers n1 <
n2 < n3 < n4, bit strings m̄c ≡ mc and m̄s ≡ ms, and a handle h such that
(n2, Receive, t2, pc, m̄c, A, c, h) ∈ trs, (n3, Send, t3, ps, m̄s, A, c, h) ∈ trs as well as
f (c, s, i) = n2.

2. A step (n2, Receive, t2, pc, mc, A, c, h) in the trace trs of a server s matches the client
trace tri

c,s of the client c w. r. t. a given partner function f if f (c, s, i) = n2 and
the first accepting step in tri

c,s is of the form (n1, Send, t1, pc, m̄c, A) for some t1,
n1 < n2, and some m̄c ≡ mc.

In Section 3.4.2.1 we explain the use of the equivalence relation in this definition.
For a partner function f , the event NoMatch f

Π,A (designed to model that f is not
a partner function that validates the communication in the result of the experiment)
consists of two cases:

(a) There are parties c and s, a session number i, and a step number n4, such that c and
s are not corrupted at step n4, the client instance Γi

c,s accepts at step n4, but the trace
tri

c,s does not match the server trace trs w. r. t. f , or
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(b) there are parties c and s and a step number n2, such that c is not corrupted at step n2,
and there is a step (n2, Receive, t2, pc, mc, A, c, h) ∈ trs for which no session number i
exists such that the step matches the client trace tri

c,s w. r. t. f .

The event NoMatchΠ,A denotes that the event NoMatch f
Π,A occurs for all partial func-

tions f : IDs × IDs ×N → N when the experiment is run with protocol Π, and ad-
versary A, i. e., the event that there does not exist a partner function that validates the
success of the experiment.

The advantage of an adversaryA running against Π is the probability that the adversary
is successful in breaking the protocol, formally defined by

AdvΠ,A = Pr [NoMatchΠ,A] . (3.9)

An adversary is called (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary if the follow-
ing holds: 1. Its overall running time is bounded by t, 2. the adversary selects no more
than nID identities in its first step, 3. for each of these identities, the number of calls
with receive, send, sign, or time instructions is bounded by nrcv, nsend, nsign, and ntime,
respectively, 4. the total number of principals corrupted by the adversary is not larger
than ncor, and 5. in each of these calls, the size of the payload or message provided to
the principal is no more than ldata.

A SA2ME protocol Π is (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata, ε)-secure if we have
AdvΠ,A ≤ ε for any (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary A.

Note that our notion of security also takes care of replay attacks: If a server accepts
equivalent (or equal) messages mc and m′c from the same client c, then in the trace trs
there are two different entries (n1, Receive, t1, p1

c , mc, A, c, h1) and (n2, Receive, t2, p2
c , m′c,

A, c, h2), where n1 6= n2. If the event NoMatch does not occur, then, by definition, there
must be a partner function f and tuples (c, s, i1) and (c, s, i2) such that f (c, s, i1) = n1
and f (c, s, i2) = n2. Since f is a function and n1 6= n2, it follows that i1 6= i2. Therefore,
the client c did send the message mc twice: once in session i1, and once in session i2.

Hence, our notion of security does allow a server to accept the same message twice,
but only if it also has been sent twice. However, since there is no communication be-
tween server and client except for the exchanged messages, the server has no way of
knowing whether a message that has been received twice was also sent twice. There-
fore, protocols satisfying our security definition have to be designed in such a way that
a message is accepted at most once by a server (with all but negligible probability).10

3.4.2.1. Message Equivalence

In the definition of matching traces, we used the equivalence relation defined in Sec-
tion 3.2.2.3. This explicitly allows the adversary to modify messages on the network
without breaking the security of the protocol. But as we defined above, the adversary
is only allowed to replace a message with an equivalent one, i. e., it is only allowed

10Observe that it is of course allowed for the server to accept the same payload twice from the same client.
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to modify a message in a way that does not modify the behavior of the protocol algo-
rithms. Hence, the results returned to the service and the environment are the same.

For example, in the case of SA2ME-1 (see below), this security definition allows the
adversary to replace the valid signature of a message with another, equivalently valid
signature from the same signature key. To disallow this kind of replacement, one could
drop the message equivalence relation from the definition of matching traces and force
the traces of client and server to match exactly. Then, for SA2ME-1 to be asymptoti-
cally secure, one would need a signature scheme that is secure against strong existential
unforgeability, see, e. g., [ADR02]; but we argue that this additional security guarantee
does not rectify requiring a more complex signature scheme.

But message equivalence is also useful to analyze flexible encoding schemes which
allow different, semantically equivalent encodings; this is, for example, heavily used
in SOAP to introduce extendibility. It also allows explicit modification of messages by
the network as long as it is not security relevant: For example, in SOAP, so-called inter-
mediaries are allowed to modify some message headers while transporting a message
from the sender to the final receiver.

3.5. Correctness and Security of SA2ME-1

First, we state that SA2ME-1 is indeed correct:

Theorem 3.1. The protocol SA2ME-1 with message id length lnonce is an (n, ε)-correct SA2ME
protocol, where ε = 1− 2−n·lnonce ·∏n+1

i=0 (2
lnonce − i).

We now state that SA2ME-1 is secure. We show this by following a standard ap-
proach: For each adversary against SA2ME-1 we construct an adversary against the
underlying signature scheme with comparable running time and success probability.
Recall the notion of a signature scheme that is (t, q, l, ε)-secure against EUF-CMA from
Section 2.1.3.1.

Theorem 3.2. SA2ME-1 is (t1, nID, nrcv, nsend, nsign, ntime, ncor, ldata, ε1)-secure if the signa-
ture scheme used is (t2, q2, l2, ε2)-secure with

t2 ∈ O(t1 + nID · (tG + nops · (capmax · (lID + ltime) + tS(lmsg))), (3.10)
q2 ≤ nsign + nsend, (3.11)
l2 ≤ lmsg, (3.12)

ε2 ≤
ε1

nID
+

2lnonce !
(2lnonce − nID · nsend)! · 2lnonce·nID·nsend

− 1 , (3.13)

where nops = nrcv + nsend + nsign + ntime, capmax is the maximum of the capacities of all
servers, and lmsg ∈ O(lID + lnonce + ltime + ldata).

The security proof for our protocol, see Section 3.5.2, first establishes that in SA2ME-
1, no server accepts the same message twice, therefore replay-attacks in their most ob-
vious form are impossible. We then prove that every “break” of our protocol (i. e., every
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occurrence of NoMatchΠ,A) implies that collision of message id’s or existential forgery
of a signature happened. We then use this fact to construct a simulator that uses an ad-
versary against SA2ME-1 and a “simulated” protocol environment to construct an ad-
versary against the signature scheme. Theorem 3.2 then follows from a precise analysis
of the resources used and success probability achieved by the thus-obtained adversary.
We mention in passing that the constants hidden in the O-notation in Theorem 3.2 are
reasonably small.

Since Cook and Reckhow proved that RAM machines and Turing machines are poly-
nomially equivalent [CR73], the above Theorem 3.2 implies the following:

Corollary 3.3. SA2ME-1 is asymptotically secure if it uses a signature scheme that is asymp-
totically EUF-CMA secure.

3.5.1. Correctness of SA2ME-1

Proof of Theorem 3.1. As a first step, we note that there are 2lnonce different message id’s,
hence the probability of n message id’s chosen uniformly at random being different is
exactly

2lnonce · (2lnonce − 1) · (2lnonce − 2) · · · · · (2lnonce − n + 1)
(2lnonce)n , (3.14)

thus ε from the statement of the theorem is the probability of a collision of message id’s.
It therefore suffices to show that the relevant messages are always accepted, unless
there are two different client sessions that choose the same message id.

So assume that there are no collisions of message id’s, let (n1, Send, t1, pc, mc, A) ∈ tri
c,s

and (n2, Receive, t2, p′c, mc, δs, c′, h) ∈ trs in an experiment where A is a benign adver-
sary, and assume that t1 ∈ ϕ(s, µs(n2), t2).

First, note that the message id of mc can only be the same as that of a message that was
previously delivered to s if a collision in the above sense occurs, since A is benign and
therefore delivers mc at most once to s. Hence, we can assume n1 < n2. We show that
none of the four cases that lead to rejection of the message on the server side happens,
unless a collision of message id’s has occurs. Since mc was created by the client instance
Γi

c,s, we know that the To- and From-fields of mc are s and c, respectively, and that mc
was signed with c’s private key. Due to the above, we also know that unless a collision
appeared, mc’s message id does not already appear in the set L maintained by s. Finally,
the message cannot be rejected in step 1(c), since by the prerequisites, τ(mc) = t1 ∈
ϕ(s, µs(ns), t2).

Thus, the server accepts in all cases where no collision has occurred. By construction
of the protocol, it is also clear that the server concludes that the message has been sent
by c, and that p′c = pc because the Body-Field of mc equals pc.

Now assume that additionally (n3, Send, t3, ps, ms, A, c′, h) ∈ trs and (n4, Receive, t4,
p′s, ms, δc) ∈ tri

c,s with n2 < n3 and n1 < n4, but with no (n′, . . . , A, . . .) ∈ trs such that
n2 < n′ < n3.
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First, we know that the server only generates one response for the incoming message
mc (as it overwrites c with ε in the tuple (t, r, c) in L after sending the response), and
since the adversary is benign, this response is delivered only once to c, so n4 is the only
step in which a response can be accepted by c. Now we know that the probability of
rejection by the client is zero, because the To-field of the response is set to c, the message
id is correct as it was stored in the server’s memory (which was not reset between n2
and n3), and the server’s signature is correct.

Thus, the client accepts the message at n4 and we also have p′s = ps because the
Body-field of the response is set to ps by the server.

3.5.2. Security of SA2ME-1

To prove Theorem 3.2, we perform a concrete security analysis of SA2ME-1: We show
that an adversary with a given resource bound and success probability against SA2ME-
1 immediately leads to an attack on the signature scheme with resource bound and
success probability “close” to the ones of the given adversary against SA2ME-1.

We proceed in two steps: We first show that every successful attack against SA2ME-1
must involve the forgery of a signature of an uncorrupted principal, or the collision
of two nonces chosen by the client algorithm. Since both of these events happen with
very low probability only (provided that the signature scheme is secure), this implies
that SA2ME-1 is secure in an asymptotic sense.

In a second step, for a more detailed analysis, we provide a simulator S (see Ap-
pendix A and the explanation in Section 3.5.2.2) which turns any adversary A against
SA2ME-1 into an adversary SA against the signature scheme. We then analyze the suc-
cess probability of SA, which is “close” to the success probability ofA, and the running
time of SA, which is, roughly speaking, linear in the running time of A.

Note that the first part of the proof does not rely on any assumptions about the secu-
rity of the signature scheme.

3.5.2.1. Attack Implies Collision or Forgery

Lemma 3.4. Let A be an adversary. For every run of the experiment ExpSA2ME-1,A in which
the event NoMatchSA2ME-1,A occurs, one of the following events occurs as well:

(a) A produced a bit string that is accepted as a valid signature for an uncorrupted identity,
which was neither obtained from the client or server algorithms nor from the signature
oracle, or

(b) there are two client instances Γi
c,s and Γi′

c,s with i 6= i′, and both client sessions chose the
same message id.

Note that to achieve the properties mentioned in the lemma, the client algorithm
could also use a counter to determine fresh message id’s for each message. This would
be sufficient to ensure security of our protocol, but comes with the price of the client
having to maintain a long-term state. To prove Lemma 3.4, we first show that SA2ME-1
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is resistant against replay attacks. The following lemma states that equivalent messages
are not accepted twice by a server during a protocol run:

Lemma 3.5. Let A be an adversary and s ∈ IDs. Then in every run of ExpSA2ME-1,A, if (n1,
Receive, ts(n1), p1, m1, A, c1, h1) and (n2, Receive, ts(n2), p2, m2, A, c2, h2) are entries in trs
with m1 ≡ m2, then n1 = n2 and thus m1 = m2.

For the proof, we define the following notation: For a server identity s, let ts
min(n)

denote the value of s’s internal variable tmin before step n.

Proof of Lemma 3.5. Assume that a server s accepts equivalent messages m1 ≡ m2 that
both decode into {(From : c, To : s, MsgID : r, Time : t, Body : x)}sksig

c
, at steps n1 and n2,

where n1 < n2. Then at the step n1, the pair (t, r, c) is inserted into L. At point n2, since
s accepts m2, we know that (t, r, c) is not contained in L anymore. Also, ts

min(n2) < t
(otherwise, s rejects).

Assume there was no reset between n1 and n2. Since (t, r, c) has been removed from
L at some point before n2, we know that ts

min(n2) ≥ t due to the construction of the
protocol. This is a contradiction to the above.

Hence a reset happened at step nr, where n1 < nr < n2. Due to the monotonicity of
the clocks, ts(n1) ≤ ts(nr). Since the server accepted the message m1 with timestamp t
at point n1, we know that t ≤ ts(n1) + tol+s . We also know that ts(nr) + tol+s ≤ ts

min(n2),
since the server runs SA2ME-1. Therefore we conclude ts

min(n2) < t ≤ ts(n1) + tol+s ≤
ts(nr) + tol+s ≤ ts

min(n2)—a contradiction.

We remark that the preceding proof is the only situation where we actually use mono-
tonicity of the clocks—it is obvious that clocks are needed only to circumvent replay
attacks. Also, it is immediate from the proof that it suffices to demand that clocks of
participants who act in the server role are monotone.

Proof of Lemma 3.4. Let A be an adversary. Fix a run of the experiment ExpSA2ME-1,A in
which the event NoMatchSA2ME-1,A appears.

By construction of the experiment, every signature for a valid SA2ME-1 message that
A did not generate internally (possibly with access to the secret key after corruption)
appears in the trace of the corresponding principals: By definition, such messages are
elements of the exception set E∗, and hence the signature oracle Ω refuses to sign these
bit strings.

We now define a partner function f as follows: For every client instance Γi
c,s, if the

first accepting step in tri
c,s (which must be a Send-instruction) is (n, Send, t, p, m, A), then

let f (c, s, i) = n′, where n′ is the smallest step number referring to an accepting Receive
query of the server instance Σs with some incoming message m̄ ≡ m, if such a step
exists; let f (c, s, i) be undefined otherwise.

By the prerequisites, we know that NoMatch f
SA2ME-1,A occurs in the protocol run. We

assume that neither (a) existential forgery against an uncorrupted key nor (b) collision
of message id’s for client sessions Γi

c,s and Γi′
c,s for i 6= i′ occurs.
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Note that under the above assumptions, if equivalent messages m1 ≡ m2 occur in the
protocol run, we know that the signatures on both m1 and m2 are the same, i. e., if the
messages differ, then only on the encoding of non-signed parts.

To prove this, let messages m1 ≡ m2 be messages occurring in the run of the protocol.
Then we know that the abstract messages in the notation used above is the same for
both messages. Now if m1 and m2 are request messages, they both were signed by
the same client instance, as by assumption no collision of message id’s and no forgery
occurred; hence, the signatures of both messages are the same. If, on the other hand,
m1 and m2 are response messages, they also contain the same signature, as each server
sends at most one response containing a certain message id (again, by assumption no
collision of message id’s occurred).

Thus, for the rest of this proof, without loss of generality, we assume that if messages
signed by uncorrupted keys are equivalent, they are also equal.

We prove the lemma by distinguishing the two cases in the definition of NoMatch f

(see Section 3.4.2) and leading both cases to a contradiction.

First Case Assume that case (a) in the definition of NoMatch f
SA2ME-1,A occurs. By def-

inition of the NoMatch event, there are parties c, s, a session number i, and a step n4
such that c and s are not corrupted at step n4, the client Γi

c,s accepted at n4, but tri
c,s

does not match the server trace trs w. r. t. f . This means that the accepting steps of tri
c,s

are of the form (n1, Send, t1, pc, mc, A)(n4, Receive, t4, ps, ms, A), but there are no t2, t3,
n2, n3, h′ with n1 < n2 < n3 < n4 such that (n2, Receive, t2, pc, mc, A, c, h′) ∈ trs and
(n3, Send, t3, ps, ms, A, c, h′) ∈ trs with f (c, s, i) = n2.

Since both c and s are not corrupt at step n4, the signature oracle available to A
does not allow the signing of valid protocol messages, and we assumed that existential
forgery did not occur, it follows that every valid protocol message signed with the keys
of c or s that was obtained before the step n4 were obtained by a call of the client or
server instance.

Since the client Γi
c,s accepted the incoming message ms, we know that ms hat been sent

by a server with s’s signature. Note that SA2ME-1 allows to distinguish messages sent
by client or by servers: The former contain a message id, the latter a reference to one.
By the above, this means that A obtained ms from a call to the server instance Σs. By
construction of the protocol, this means that there is an entry (n3, Send, t3, p′s, ms, A, c′, h)
in the server trace trs, and since A had access to ms in step n4, it follows that n3 < n4.

Since the client instance Γi
c,s extracted the payload ps from ms, and the server instance

Σs encapsulated the payload p′s into ms, it follows that ps = p′s. Since Γi
c,s accepts ms, it

is addressed to c, and by construction of the protocol it follows that c = c′. Therefore
the above step in trs is (n3, Send, t3, ps, ms, A, c, h), with n3 < n4.

Further, we know that a server s accepts a Send-request only if there is a preceding
Receive request accepted by s with a matching message handle (i. e., a message id).
Hence there is an entry (n2, Receive, t2, p′c, m′c, A, c′′, h) in the trace trs with n2 < n3, and
there is no accepted Receive instruction or Send instruction with message handle h in
trs with a step number between n2 and n3. By construction of the protocol, it follows
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that c′′ = c. Since Σs accepts the message m′c and determines the sender to be c′′ = c,
it follows that m′c is a valid SA2ME-1 client message, is addressed to s, and carries a
correct signature for c’s key.

Due to the above, and since m′c is addressed to the server s, we can assume that m′c
was obtained by the call of a client instance Γi′

c,s. Hence, in the client trace tri′
c,s, there is

an entry (n′1, Send, t′1, p′′c , m′c, A) with n′1 < n2. Since the payload p′′c was encapsulated
into m′c, and p′c was extracted from m′c, it follows that p′′c = p′c.

Since Γi
c,s accepts ms, we know that (due to the verification of message id’s, and since

we assumed that collision of id’s between Γi
c,s and Γi′

c,s for i 6= i′ does not occur) ms
contains a reference to the message id of mc, which encapsulated the payload pc. Since
ms was created by Σs using the message handle that Σs output when processing m′c,
we know from the construction of SA2ME-1 that ms carries a reference to the message
id contained in m′c. Hence mc and m′c have the same message id, and by the above
assumption it follows that m′c = mc, implying p′c = pc = p′′c .

It follows that the above step in trs is of the form (n2, Receive, t2, pc, mc, A, c, h). Again
due to our assumption that collisions of message id’s do not occur, and since mc was
created in both the client session i and in the session i′, it further follows that i = i′ and
thus n1 = n′1, which implies n1 < n2 < n3 < n4. In particular, the message mc was sent
by the client instance Γi

c,s.
We now show that f (c, s, i) = n2. By construction, since mc is the message created

by the client instance Γi
c,s, f (c, s, i) = n, where n is the lowest step number such that

Σs accepted the message mc in step n. By the above, we know that Σs accepted mc in
step n2. By Lemma 3.5, we know that a server accepts a message at most once. Hence
it follows that n2 = n, and by the steps exhibited in the server trace trs above, we know
that the trace tri

c,s matches the server trace trs w. r. t. f —a contradiction.

Second Case In case (b), there are parties c and s and a step n2 such that c is not
corrupted in step n2, and there is a step (n2, Receive, t2, pc, mc, A, c, h) in the trace trs
which does not match tri

c,s for any session number i, i. e., there is no i such that the first
accepting entry in tri

c,s is of the form (n1, Send, t1, pc, mc, A) for some n1 < n2 such that
f (c, s, i) = n2.

Since s accepts mc and determines that it has been sent by c, we know that mc car-
ries a valid signature by c, and is a SA2ME-1 message. Since we assume that exis-
tential forgery does not occur, c is not corrupt in step n2, and mc is addressed to s,
we know that mc was obtained from a client instance Γi

c,s. Hence there is an entry
(n1, Send, t1, p′c, mc, A) in tri

c,s, with n1 < n2 (since mc must be obtained before the
adversary can use it). Since p′c is the payload encapsulated in mc and pc is the pay-
load extracted from pc, it follows that pc = p′c. Hence the above step is of the form
(n1, Send, t1, pc, mc, A). Since mc is the message created by the instance Γi

c,s and mc
was accepted by Σs in step n2 (and, by Lemma 3.5, in no other step), it follows that
f (c, s, i) = n2. Hence the step (n2, Receive, t2, pc, mc, A) matches the trace tri

c,s—a con-
tradiction.
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3.5.2.2. Concrete Analysis

Proof of Theorem 3.2. Let Π denote the protocol SA2ME-1. As noted above, we provide
a simulator S (see Appendix A) which turns an adversary A against SA2ME-1 into an
adversary SA against the signature scheme. By abuse of terminology, we also refer to
the adversary SA as “the simulator” to distinguish it from the adversary A.

LetA be a (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary which has an advantage
AdvΠ,A against the protocol SA2ME-1. Let Ω = (G, S, V) be the signature scheme
used in the protocol. We analyze the adversary SA against the signature scheme Ω.
Thus, SA is given a public key pksig

? and access to a signature oracle Ω?; to successfully
break the signature scheme, it has to provide a message m and a signature σ such that
V((m, σ), pksig

? ) returns true.

We sketch what the simulator SA in Appendix A does. Roughly speaking, it runs the
experiment from Table 3.2, where it replaces one (randomly chosen) public key with
pksig

? .
More precisely, the simulator starts by letting the adversary choose a set of identities

A (a subset of the set IDs as in the experiment). Then, the simulator randomly selects
one of these identities, which we call x, and generates a signature key pair for all iden-
tities in A \ {x}. Now the simulator is able to sign messages and verify signatures for
all identities a ∈ A: If a 6= x, the simulator uses the generated key pair, but if a = x,
the simulator uses the signature oracle Ω? to sign messages and the public key pksig

? to
verify messages.

Now, SA simulates the adversary A. If, during this simulation, A requests a client
or a server to perform a step like Send, Receive, Reset, or Time, the simulator runs the
algorithms of the protocol as specified in the experiment in Table 3.2, using the adver-
sary’s parameters as input and handing the algorithm’s output back to the adversary as
defined in the experiment, and generating and verifying signatures as described above.
If A performs a Sign query to its signature oracle Ω, the simulator either uses one of
the generated key pairs or relays the query to the signature oracle Ω?. If A chooses to
corrupt the private key of some identity a ∈ A, the simulator hands the corresponding
signature key to the adversary if a 6= x, and stops otherwise (in which case SA fails to
break the signature scheme).

In any case, the simulator logs all calls to the oracle Ω?; and each time a signature
is verified using key pksig

? , the simulator checks if the verification is successful and the
message has not been logged before: If both conditions hold, the simulator found a
forgery. Thus, if the adversary A is successful in breaking the protocol because it man-
ages to forge a valid signature which has not been produced by Ω? and thus not logged,
the simulator can detect this forgery and output it; if not, the simulator fails.

Success probability We analyze the advantage AdvΩ,SA of the simulator SA against
the signature scheme Ω.

We define NoMatcha
Π,A to be the event where the adversary is successful against an

identity a, either by forging a signature under a’s identity without corrupting a’s private
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key, or because two client instances of a chose colliding message id’s. Due to Lemma 3.4
we know that NoMatchΠ,A =

⋃
a∈A NoMatcha

Π,A. Thus, we have

AdvΠ,A = Pr(NoMatchΠ,A) ≤ ∑
a∈A

Pr(NoMatcha
Π,A) . (3.15)

Now let S a
A be the variant of the simulator SA that replaces a’s public key with pksig

? .
This simulator is successful against the signature scheme Ω if the event NoMatcha

Π,A
occurs, but no message id’s collide, which we denote by CollΠ,A. Thus, we have

AdvΩ,S a
A
≥ Pr(NoMatcha

Π,A ∩ CollΠ,A) . (3.16)

The probability Pr(NoMatcha
Π,A ∩ CollΠ,A) is at least Pr(NoMatcha

Π,A)− Pr(CollΠ,A),
where CollΠ,A denotes that a collision occurred.

As the simulator SA chooses some a ∈ A at random and replaces a’s public key with
pksig

? , we have

AdvΩ,SA =
1

nID
∑
a∈A

AdvΩ,S a
A

(3.17)

≥ 1
nID

∑
a∈A

Pr(NoMatcha
Π,A ∩ CollΠ,A) (3.18)

≥ 1
nID

∑
a∈A

(
Pr(NoMatcha

Π,A)− Pr(CollΠ,A)
)

(3.19)

≥ 1
nID

Pr(NoMatchΠ,A)− Pr(CollΠ,A) (3.20)

=
AdvΠ,A

nID
− Pr(CollΠ,A) . (3.21)

Finally, the probability Pr(CollΠ,A) can be calculated as follows: For each Send action
of a client, one message id of length lnonce is randomly chosen. Thus, at most nID · nsend
message id’s are chosen from a set of size 2lnonce . The resulting probability of a collision
is given by

Pr(CollΠ,A) = 1− 2lnonce !
(2lnonce − nID · nsend)! · 2lnonce·nID·nsend

. (3.22)

Running Time We now analyze the running time of the simulator SA. We first give
an asymptotic analysis and then simplify the resulting term for the running time given
certain assumptions. First, let capmax = max{caps | s ∈ IDs}.

As we use the algorithms of the signature scheme, we use the following variables and
functions to denote their running time: Generating a key pair takes tG time, signing or
verifying a bit-string with l bits takes tS(l) or tV(l) time, respectively. We assume that
tV(l) ∈ O(tS(l)) and tS(l) ∈ Ω(l).
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ttime ∈ O(tuserNr)
tclientSend ∈ O(tuserNr + tsign)

tserverReceive ∈ O(tuserNr + tverify + capmax · (lID + ltime)

+ tmap(capmax, lnonce))

tserverSend ∈ O(tuserNr + tsign + tmap(capmax, lnonce))

tclientReceive ∈ O(tuserNr + tverify)
tcorrupt ∈ O(tuserNr)

tsign ∈ O(tuserNr + tS(lmsg) + tmap(nsign + nsend, lmsg))

tverify ∈ O(tuserNr + tV(lmsg) + tmap(nsign + nsend, lmsg))

tuserNr ∈ O(tmap(nID, lID))

Table 3.3.: Running times of the procedures of the simulator

We also use maps to store keys and associated values. We assume the time to initialize
a new map is constant, we denote the time of the other operations on the map (add,
remove, lookup) with tmap(n, l) where n is the maximal number of entries in the map
and l is the maximal length of the keys. On the machine model we use, the operations
(add, remove, lookup) can be performed in time linear in l, e. g., by using Tries.

Another prerequisite we use is a pair of an encoding function and a decoding func-
tion (E, D) which can merge multiple bit strings into a single bit string and extract a
number of bit strings from a single bit string, respectively.

For each operation mode (o, n) ∈ {(tuple, 2), (request, 5), (response, 4), (signature, 2)}
and all bit strings β1, . . . , βn, we assume that D(o, E(o, β1, . . . , βn)) = (β1, . . . , βn) as
well as |E(o, β1, . . . , βn)| ∈ O(∑n

i=1 |βi|).
The running time of the single functions can be bounded as shown in Table 3.3 for a

fixed lmsg ∈ O(lID + lnonce + ltime + ldata). Then the overall running time of the simulator
SA, denoted t, is as follows, where nops = nrcv + nsend + nsign + ntime:

O(tA + nID · tG + ncor · tcorrupt + nID · nsign · tsign + nID · ntime · ttime (3.23)
+ nID · (nsend · (tclientSend + tserverSend) + nrcv · (tclientReceive + tserverReceive))

=O(tA + nID · (tG + nops · (tS(lmsg) + tmap(capmax, lnonce) (3.24)
+ tmap(nsign + nsend, lmsg) + tmap(nID, lID)) + capmax · (lID + ltime)))

=O(tA + nID(tG + nops(tS(lmsg) + capmax(lID + ltime)))). (3.25)

Note that the machine model we use would allow us to address arbitrary registers,
e. g., we could directly use bit strings (encoded as numbers) as register numbers to
store or retrieve information and thus replace, e. g., the map which stores information
about messages signed so far and their signatures—this would result in an unrealistic
speedup for our algorithms and the use of an exponential number of registers in the
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length of messages. However, our simulator only uses these capabilities of the model
in the standard way. In particular, the adversary SA obtained by our construction is a
natural and realistic adversary.

Finally, note that the simulator SA makes at most nsign + nsend queries to the signature
oracle it is provided with, as this is the maximal number of calls to the sign function
per identity. In each of these calls, at most lmsg are being signed. Thus, the total number
of bits signed by the oracle is at most (nsign + nsend) · lmsg.

This concludes the security proof for SA2ME-1 in this model.

3.6. Practical Choice of Parameters

A weakness of the protocol as stated and discussed in Section 3.3.2 are the rather vague
guarantees implied by our security definition: A certain type of denial-of-service attack
can be mounted against the protocol, which results in the intervals ϕ being empty, or to
be in the future entirely, essentially rendering a server inaccessible for all parties who
set their clocks honestly.

Therefore, as mentioned before, it is important to choose the parameters for the
server, i. e., the tolerance tol+s and the capacity caps in a way that circumvents prob-
lems like these. In the following lemma, we specify one way of choosing values for
these parameters such that “liveliness” of the servers is guaranteed at all times.

Lemma 3.6. Let s be a SA2ME-1 server, let tol+s be the server’s tolerance, and let tdiff be at
least the time span (measured by the server’s local clock) 1. between accepting two messages as
well as 2. between a reset and accepting the first message. Then, if tol−s is a real number such
that

caps >
tol+s + tol−s

tdiff
, (3.26)

the following holds for any local server time ts: If the last reset (or initialization) of s happened
before ts − (tol+s + tol−s ), then ts

min ≤ ts − tol−s .

The lemma establishes that (resets aside), the value tmin is always at least tol−s units
of time before the current server time. Hence tol−s is the minimal amount of time that
the server can “look into the past” via its recorded set of messages, and by the way that
the protocol is designed, this means that messages with a timestamp set this much in
the past (relative to the local server time) can still get accepted. Hence the value tol−s
is a backwards tolerance with respect to out-of-sync clocks in the same way as tol+s gives
forward tolerance. For practical choices of these values, one should keep in mind that
tol−s also needs to compensate for the network delay between sending and receiving a
message, hence arguably backward tolerance should be higher than forward tolerance.

The reason why the lemma only guarantees the inequality for the case that at least
tol−s units of time have passed since the last reset is that as discussed in Section 3.3.2,
after a reset, there must be a time where no incoming message can be accepted, and
obviously one has to wait longer to ensure that messages with timestamps further in
the past can be accepted again.
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Proof of Lemma 3.6. Assume the last reset (or initialization, which for the server is the
same event) of s happened at the time ts

r (measured in the clock of s). Fix a sequence
of incoming messages since the last reset. We obviously are only interested in accepted
messages, since rejected messages do not lead to an advance of the value tmin. Further,
assuming that all messages in the sequence are accepted, we are not interested in the
messages themselves or even the sender and message id’s, but only in the time at which
they are received by s, and the timestamp they carry. Hence we consider a sequence
of messages as a sequence of pairs M = (tc

i , ts
i )i∈N, where a pair (tc

i , ts
i ) represents a

message that the server s receives at time ts
i , and which carries the client’s timestamp

tc
i . Since the minimal delay between incoming messages and between a reset and an

incoming message is tdiff, we require that ts
r + tdiff ≤ ts

0, and ts
i + tdiff ≤ ts

i+1 for all i.
We also require that tc

i ≤ ts
i + tol+s for all i (other sequences cannot be accepted by the

server). With ts
min(M)(ts) we denote the value of tmin at the local server time ts, when

the server s receives the sequence M (obviously, for this value only the elements in M
with an incoming time of at most ts are considered).

It is easy to see that ts
min(M)(ts) for a fixed ts, considered as a function in M, is mono-

tone in the following sense: Lowering an incoming-time value of a pair or increasing
the timestamp of a pair in M does not decrease the value of ts

min(M)(ts), as long as
the modified sequence still obeys the restrictions explained above. It therefore follows
that we only have to consider the extreme case where messages come with the highest
possible frequency and having the highest (at that time) admissible timestamp, i. e., we
only need to consider the canonical sequence Mc = (ts

r + i · tdiff, ts
r + tol+s + i · tdiff)i≥1. This

sequence Mc can be thought of as the optimal denial of service attack against the server
s. By construction of the protocol and due to choice of caps, s only removes elements
from L if there are more than (tol+s +tol−s )/tdiff elements in the set L.

The claim that we need to prove is: If t ≥ ts
r + tol+s + tol−s , then ts

min(Mc)(t) ≤ t− tol−s .
We first consider the case t = ts

r + tol+s + tol−s . In this case, exactly tol+s + tol−s units
of time have passed since the last reset. In this time, s has accepted exactly (tol+s +tol−s )/tdiff

messages, which is less than caps. Therefore, no element has been removed from the
set, and tmin still has the value that it was set to at the last reset, which is ts

r + tol+s by the
specification of the protocol. Hence ts

min(Mc)(t) = ts
r + tol+s = t− tol−s , which proves

the required inequality. For points in time beyond t = ts
r + tol+s + tol−s , it suffices to

prove that tmin does not advance faster than ts. This is easy to see, since by the setup of
the sequence Mc, tmin advances by exactly tdiff for each element removed from the set
L, and for each received message, at most one message is removed from this set (since
all messages have different timestamps). Finally, the delay between the acceptance of
two messages, and hence the minimal delay between advancements of tmin, is exactly
tdiff. Therefore, given the sequence Mc, the value tmin increases at most as fast as the
server clock, and hence the inequality is maintained.





4. Simulation-Based Analysis

The second framework that we use to analyze all three protocols is the Inexhaustible
Interactive Turing Machines (IITM) framework introduced by Küsters in [Kü06a]. In this
chapter, we uniformly model the security guarantees fulfilled by our three protocols
in an ideal functionality and we give implementations of the protocols that are later
proven secure.

In Section 4.1, we briefly introduce the IITM framework. We then define a ideal func-
tionality for S2ME protocols in Section 4.2 that is (through parameterization) flexible
enough to capture the functionality of all three protocols. Next, in Section 4.3, we pro-
vide three different implementations of different parameterizations of the ideal func-
tionality; in Section 4.4 these three implementations are shown to securely realize the
ideal functionality. As our implementations use idealized versions of cryptographic
primitives, we make some remarks on realizing those in Section 4.5. We conclude the
chapter with some comments in Section 4.6.

Parts of the results in this chapter, namely an analysis of a simpler modeling of
SA2ME-1, were published in [KSW09b, KSW09c], see Section 4.6.5 for some remarks
on differences to the work in this chapter.

4.1. Simulation-Based Security and the IITM Framework

Simulation-based security allows to analyze cryptographic protocols such that proper-
ties proven remain true even when the protocol is used as a sub-protocol of a larger
system.

The main idea is to define a so-called ideal functionality, which specifies a crypto-
graphic goal to be realized by a protocol in an idealized fashion. This ideal functional-
ity also documents the capabilities of an attacker on the protocol. A concrete protocol
is called secure if it realizes the ideal functionality such that every attacker on the real
protocol can be simulated in the ideal setting.

We briefly sketch Küsters’ Inexhaustible Interactive Turing Machines framework. For
precise definitions and background on these notions, see [Kü06a,Kü06b]. For references
to similar frameworks, see the section on related work in Chapter 1.

4.1.1. Inexhaustible Interactive Turing Machines

In the IITM framework, cryptographic protocols are modeled as a set of concurrently
running machines, called a system of IITM’s (see below). The machines in the system
are activated sequentially, where at each point in time, only a single machine is active,
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and each machine may be activated repeatedly. A single IITM is a probabilistic Turing
machine with an associated polynomial q used to bound its running time and output
length.

Tapes. In addition to work tapes, an IITM has named external tapes which may be
shared with other machines. External read-tapes of machines are partitioned into con-
suming and enriching tapes. This distinction serves to allow the maximal running time
of the machines to depend on the input on the enriching tapes, and not merely on the
security parameter alone as in standard cryptographic models as [BR93a].

In order to avoid an exponential blow-up of lengths of exchanged messages, a well-
formed system is defined to be one where the sub-graph of machines connected with
enriching tapes is acyclic. As proven in [Kü06a], a well-formed system can be simulated
on a single polynomial-time machine.

External tapes are partitioned into network tapes and I/O-tapes. The former are used
to model communication with subprocesses (here an attacker on the system cannot
interfere), the latter model network communication (this is assumed to be controlled
by the adversary completely).

Modes of Computation. An IITM can run in two different modes (determined by the
content of the mode tape upon activation):

The CheckAddress mode is used to determine whether an incoming message is in-
tended for the current machine. When activated in this mode, the IITM reads an input
message from a special input tape and returns accept or reject on a special output tape.

In this mode, computation must not be probabilistic, and the number of steps taken
must be bounded by q(n), where q is the polynomial associated with the machine, and
n is the length of the content of the work tapes, the current input, and the security
parameter. This mode is typically used to verify whether an incoming message belongs
to the correct session.

The Compute mode is then used for the actual computation (which may include
responding to the incoming message). The number of steps in this mode must be
bounded by q(n), where q and n are as above.

Additionally, the total output up to a point in the run of the machine, as well as the
length of all work tapes must always be bounded by q(m), where m is the sum of the
security parameter plus the length of all input received on enriching input tapes in
mode Compute in the current run of the system.

This implies that when a machine is required to produce “long” output, it previously
must be given the corresponding resources via enriching input tapes.

In each activation, a machine produces output on at most one output tape, the ma-
chine that has the corresponding tape as an input tape is then activated next. If no
output is produced, the environmental machine is activated (see below).
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4.1.2. Systems of IITM’s for Cryptographic Protocols

A system of IITM’s is an expression of the form

M = M1 | . . . | Mk | !M′1 | . . . | !M′k , (4.1)

where the Mi and M′i are IITM’s. The machines M′1, . . . , M′k are said to appear in the
scope of a bang: The bang operator “!” provides an “infinite supply” of machines (run-
ning the code of) M′i . In a run of a system, this is handled as follows:

When a machine M sends a message (via a shared tape) to a machine M′ of which
one or more copies are already running, but all running copies reject the message in
its CheckAddress mode and M′ appears in the scope of a bang, then a new instance of
M′ is started, which then may accept the message in CheckAddress mode. If it does, it
remains active and processes the incoming message. Otherwise it is deactivated again.
This allows to start an unbounded number of sessions of a protocol.

Composition of Machines. An external tape of a systemM is a tape which is a network-
or I/O-tape of one of its machines for which there is no corresponding output or input
tape in the system itself. These tapes allow external machines to communicate withM,
and thus enableM to provide a functionality to “outside” machines.

This mechanism allows to naturally compose systems of IITM’s in a way allowing in-
teraction: For two systemsM1 andM2, the compositionM1 | M2 denotes the system
containing all machines of M1 and M2, where non-external tapes of the systems are
consistently renamed (the systems only influence each other via their communication
on their external tapes).

Multi-Session Versions. The IITM framework offers a simple mechanism for specifying
multi-session versions of a functionality: For an IITM M, the machine M simulates M,
and expects that all incoming messages are prefixed with a session id (which is fixed
after the first call). This session id is then removed from the string actually handed to
the simulated M, and is added as a prefix to every message written by the simulated
M on an output tape. Hence a system of the form !M has an unlimited supply of
machines executing the code of M, each using an independent session. Multi-party,
multi-session versions of a protocol are then obtained by using M: These machines
handle two prefixes containing a party id and a session id.

Equivalence ByM(1η , a) we denote running the systemMwith security parameter η
and auxiliary input a. A system may have a special external output tape named decision.
When a machine writes output to this tape (the output must be either 0 or 1), the run of
the system stops immediately. With Pr(M(1η , a) 1) we denote the probability that a
run ofM(1η , a) results in 1 being the value written on the decision tape.

Two systemsM1 andM2 are computationally indistinguishable if

|Pr(M1(1η , a) 1)− Pr(M2(1η , a) 1)| (4.2)

is negligible in the security parameter η for all a ∈ {0, 1}∗.
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Figure 4.1.: An abstract view of the two systems of IITM’s

4.1.3. Protocol Security in the IITM Framework

To define security notions for cryptographic protocols, the composition of a given sys-
tem with an environment and an adversary is studied.

An adversary forM is a system A such that the set of external I/O-tapes ofM and
A are disjoint, and for every external network output tape of M, there is an external
network input tape ofA, and vice versa. This means that an adversary forM is syntac-
tically suited to connect to all external “network ports” ofM. Typically, all incoming
external tapes of an adversary are defined to be enriching.

An environmental system for M similarly connects to the I/O-tapes, and its set of
external network tapes is disjoint with that of M. When P and F are systems (the
real and the ideal system), then an adversarially connectable system S is a simulator for
F and P , if S | F has the exact same set of external tapes (with matching type and
direction) as P .

Note that an output (input) tape in S | F is only external when there is no input
(output) tape with the same name in S or in F . Hence a simulator only connects to the
network tapes of F , and syntactically, S | F and P “look the same”. In particular, a
system E is a suitable environment for P if and only if it is one for S | F .

We now define the central security notion that we study, also see Figure 4.1. In the
following, F is supposed to be an ideal system (also called ideal functionality), and P
a concrete system that attempts to realize the ideal functionality. P and F are I/O-
compatible if they have disjoint sets of external network tapes, the same set of external
I/O-tapes, and each external I/O-tape has the same direction in both.

Let P and F be I/O-compatible systems. Then P securely realizes11 F , denoted by
P ≤BB F , if there is a simulator S for P and F such that for all adversariesA and envi-
ronments E for P or S | F , the systems E | A | P and E | A | S | F are computationally
indistinguishable.

This models the intuition expressed above: The simulator S essentially makes the
system F behave exactly as P (without the simulator). Hence any attack that can be
mounted on the real protocol system P is also successful against the ideal functionality
F .
11We use black-box simulatability (hence, the “BB”), see [Kü06b] for other variants and their relation.
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Figure 4.2.: Legend for illustrations of (systems of) IITM’s

4.1.4. Notation for IITM’s

We introduce some conventions we use when we define an IITM M below by listing pa-
rameters, tapes, variables, steps, functions, and CheckAddress conditions. See Figure 4.2
for conventions when illustrating (systems of) IITM’s.

Parameters. Some IITM’s are parameterized, e. g., we write M(x, y) and view x and
y as parameters influencing M’s operation. If M is parameterized, we first define the
names and types of the parameters.

Tapes. We list all tapes of M. We denote by A ←→ B a tape or a pair of tapes in the
following way:

• the label on the left-hand side (e. g., A) is the name of the tape(s) on M’s side of the
tape, whereas the label on the right-hand side (e. g., B) is the name of the tape(s)
on the machine that M is connected to,

• a single output tape is denoted by −→, a single input tape is denoted by←−, and
a pair of input and output tapes is denoted by←→,

• a consuming tape is denoted by −→, an enriching tape by −�,

• an I/O tape is denoted by −→, a network tape by 99K.

We often use the convention that the tapes connecting machines X and Y are labeled
Xa ←→ Yb, Xc ←→ Yd, and so on. When we say “received from Xa”/“send to Yb”, we
mean “received on the incoming tape labeled Xa” or “sent on the outgoing tape labeled
Yb”.

Variables and Initialization. We list all variables that are global to M in the sense they
are stored on the work tapes between steps (see below), and we give the values they are
initialized with upon first activation; ⊥ is used to denote an uninitialized variable or
“null” value. Variables that are not listed here, but later used in the steps, are supposed
to be local to that step.
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Steps. The functionality of M is described as a loop containing a number of steps,
where each step s has (roughly) the form

if ps received from as [while cs], do Ls (4.3)

where ps is some pattern of a message, as is an identity, cs may contain some additional
conditions, and Ls is a list of instructions.

We assume that for each incoming message m, the machine M looks for the first step
s that has a matching pattern ps, where the sender of m matches as and where the addi-
tional conditions cs hold (similar to the concept of guarded commands, see [Dij75]). In
the pattern, we underline variables to denote binding on first match, i. e., an underlined
variable x denotes “match any value v and then let x = v”, whereas a simple x means
“only match messages that contain the value of x”.

If no matching step is found, m is ignored; otherwise, if step s matches, the instruc-
tions in Ls are executed. If Ls contains instructions to receive a message matching some
pattern p′, the machine waits for exactly that message: M accepts any message m′ that
the CheckAddress mode permits (see below), but M then drops that message m′ if it
does not match p′ (even if m′ matches the pattern ps′ of some steps s′). This ensures that
the processing of one step can only be interrupted, but not canceled.

In addition to global variables as defined above, the instructions in Ls may contain
local variables in the sense that they are only valid throughout Ls and discarded after
the execution of Ls.

If a step contains the instruction “break”, the machine stops the current execution of
the current step, i. e., the machine terminates, but it accepts new messages after that. In
contrast, the instruction “halt” terminates a machine completely, i. e., from that point
on, the CheckAddress mode rejects all messages.

Functions. For some functionalities we also define functions or subroutines. In ad-
dition to the usual calls to functions or subroutines, we sometimes run subroutines
“concurrently”:

We assume that the processing of the subroutine starts immediately, but the subrou-
tine may include instructions to receive certain messages. If that is the case, the sub-
routine (and the simulator) pauses execution. Now, if some message is received by the
simulator, it checks if one of the subroutines is waiting for that message, and if that is
the case, activates the corresponding subroutine. Otherwise, the message is processed
as usually by the steps of the simulator functionality, see above.

Thus, the subroutines and the normal steps of the simulator are not really executed
concurrently, but in an interleaving semantics, just as IITM’s.

CheckAddress. Finally, for most functionalities we describe the IITM’s operation in
CheckAddress mode. If this part is left out, the machine accepts all incoming messages.
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Figure 4.3.: The ideal functionality FS2ME connected to the environment and the simu-
lator, which is in turn connected to the adversary.

4.2. Ideal Functionality for Secure Two-Round Message Exchange

In this section, we introduce an ideal functionalityFS2ME for secure two-round message
exchange. It consists of the Message Exchange functionality (FMX), the Server Manage-
ment functionality (FSM), and the Enriching Input functionality (FEI), given in Appen-
dices B.1.1, B.1.2, and B.1.3, respectively. The ideal functionality is parameterized as
described in Section 4.2.1. For an illustration of the ideal functionality and its connec-
tion to the environments as well as the simulator that is later used in the proofs in this
chapter, see Figure 4.3.

Formally, let

FS2ME(leak, pw-auth) = !FMX(leak, pw-auth) | !FSM(pw-auth) | !FEI. (4.4)

Each protocol session, i. e., each message exchange with at most two messages, is pro-
cessed by one instance of FMX. The functionality is connected to the environment (or
another IITM, depending on the overall system) with two pairs of tapes, one for the
client side of the communication and one for the server side. FMX is able to receive the
request on the client side and transfer it to the server side, and to transfer the response
vice versa. FMX also defines how the adversary is able to interfere with the message
transfer.

In contrast to the one instance per session pattern of FMX, the functionality FSM is long-
lived: For each identity, at most one instance of FSM runs and manages this server’s
resources (and, in case passwords are used as explained below, the clients’ passwords).

The enriching input functionality just forwards resources from the environment to
the adversary. This does not make sense in the ideal functionality alone, but it is used
for an additional feature in the implementation as explained in Section 4.3.1.2.
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In the next section, we describe how FMX and FSM are parameterized to allow for
different implementations. We then discuss our modeling of password-based security
in Section 4.2.2. Next, in Section 4.2.3 and 4.2.4, we describe the functionality in more
detail, first the interface for the environment as well as an example message flow for an
intended use of the functionality, and second the interface for the adversary. The cor-
ruption mechanism, which allows the adversary to corrupt each instance of FMX either
on the client side or on the server side (or on both sides), is described in Section 4.2.5.
The actual functionalities are given in the Appendix B.1, a diagram of the states and
steps of FMX is given in Figure B.1.

Note that in FS2ME, we use the underlined version of FSM and the double underlined
version of FMX and FEI. Thus, the messages of FSM seen in Appendix B.1.2 are pre-
fixed with the server’s identity, while the messages of FMX and FEI in Appendices B.1.1
and B.1.3 are prefixed with both the server’s identity as well as the client’s identity. E. g.,
when sending a response from server s to client c using step (B.4), the environment
would actually send a message of the form (s, c, sids, Response, ps).

4.2.1. Parameters

The ideal functionality is parameterized such that it is flexible enough for different
implementations, and thus, in Section 4.3, we are able to provide three different real-
izations along the lines of Section 2.4:

• The first realization guarantees the authenticity of the exchanged messages by us-
ing digital signatures; this is the adaptation of the protocol SA2ME-1 introduced
in Section 2.5.1 and analyzed in Chapter 3.

• The second realization implements the protocol CSA2ME-1 from Section 2.5.2 and
not only ensures authenticity of the messages, but also confidentiality of the pay-
loads transferred. It uses digital signatures and hybrid encryption.

• The third realization, implementing the protocol PA2ME-1 from Section 2.5.3,
guarantees the authenticity of the exchanged messages (but, as discussed below,
in a weaker sense) under the (realistic) assumption that only the servers have sig-
nature keys usable for authenticating messages, while the clients use passwords
to authenticate the requests.

To allow for this kind of flexibility, the ideal functionality has two parameters:

• The parameter leak : {1}∗ × {0, 1}∗ → {0, 1}∗ for FMX is called the leakage algo-
rithm that describes what information about the payloads is visible to the adver-
sary.

In the realizations of SA2ME-1 and PA2ME-1, which offer no confidentiality, the
leakage algorithm we use is the full leakage leakfull defined by leakfull : (x, y) 7→ y,
modeling that the payloads are fully visible to the adversary. In the realization
of CSA2ME-1, only partial information about the payloads leaks to the adversary,
i. e., the length of the payload.
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See Section 4.3.3 for details on leakage algorithms.

• The parameter pw-auth ∈ {true, false} for FMX and FSM controls whether pass-
words are used for authentication. In that case, we provide the adversary with
additional abilities, e. g., to guess passwords or to test whether the password used
in a session is correct.

Note that these two parameters do not only allow the three realizations mentioned
above, but imply at least a fourth version, see Section 2.4. The leakage parameter even
allows additional versions, e. g., protocols that even hide the length of the payload if
that is below some fixed value, or only hide parts of the payload.

4.2.2. Analyzing Password-Based Security

When analyzing password-based security in the IITM framework (or any other frame-
work with asymptotic security definitions), the simplest approach would be to assume
that passwords are chosen uniformly at random from some set that grows with the se-
curity parameter; as already mentioned in Section 2.1.3.6, this excludes realistic attack
scenarios. In contrast, we abstain from making such assumptions, but instead try to
realistically model different aspects of the problem along the lines of [CHK+05].

First, we have to model how passwords are chosen. In our functionalities, we let the
environment provide the passwords for clients and server as part of the input. This
effectively means that we do not make assumptions about the probability distribution
for passwords or the relation between passwords, e. g., of one user for different servers
etc.

It also means that our modeling covers all possibilities what the adversary knows or
learns from external sources (i. e., not our protocol): As the security definition quantifies
over all environments and all adversaries, it includes the cases where the environment
fully or partially (or not at all) cooperates with the adversary. This means that even if
the adversary knows all or some passwords or if it can choose all or some passwords,
the protocol stays secure in the sense defined by the ideal functionality.

Next, we have to model the realistic and unavoidable ability of the adversary to test
if a certain password is correct: In realistic setups, the adversary can always send a
request message to a server using the assumed password of a client, and then decide
based on the server’s reaction if the assumed password was correct. We model this by
simply allowing the adversary to explicitly test if a password is correct, see Section 4.2.4
for an overview of the abilities of the adversary in our modeling.

But in addition to this unavoidable ability to test passwords online, i. e., interactively
with a server, a naı̈ve implementation could be vulnerable to an offline attack, where
an adversary intercepts a message and then, in an offline phase (i. e., without commu-
nicating with the protocol’s participants), tries to learn something about the password.
For example, a simple protocol that sends a hash of the password in the clear would not
be able to counter offline attacks as the adversary may, e. g., use a dictionary of com-
mon passwords, hash each of them and compare the result to the intercepted password
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hash. Our ideal functionality, on the other hand, guarantees that the adversary does
not receive any information about the password used in an uncorrupted session except
its length and whether the password supplied by the environment is correct: Unless
the functionality is corrupted, neither the password nor any value computed from it or
depending on it (except its length and whether the password ist correct) are sent to the
any other machine (except FSM).

Informally, this guarantees that the online attack is the “best” possible way for the
adversary to learn something about the password, and that the adversary can only test
passwords one at a time (i. e., testing a password does not yield information about any
other password). We remark that the server can easily detect online guessing attacks
and partially impede online guessing attacks12, e. g., by limiting the number of (wrong)
passwords that a user is allowed to try out in a certain time frame, or by locking ac-
counts after too many failed authentication attempts occurred.

In addition to the above, our ideal functionality also provides the following guaran-
tee: Even if an adversary knows a client’s password, it is still not able to “break into”
an uncorrupted instance of the FMX functionality of that client, more precisely, the ad-
versary may start new sessions if it knows a password, but once a client initiated a
session, the adversary has no means—besides corruption—to change the request or the
response such that the client accepts the response.

4.2.3. Regular Operation and the Interface for the Environment

First, we remark that our functionality can be employed by other IITM’s to implement,
e. g., high-level protocols which build upon secure two-round message exchange. Nev-
ertheless, without loss of generality, in what follows we describe our functionality in a
setting where it is directly used by the environment, as this setting is the one relevant
for the security proofs later on.

The environment communicates with FMX over two pairs of tapes, Ec
MX and Es

MX,
which handle the client side and the server side, respectively. FSM is accessed by the
environment on a pair of tapes named ESM.

The intended use of the functionality to transfer payloads between a client c and
a server s is roughly as follows, where we explain the steps and illustrate them by
example messages:

0. The environment initializes the server s, i. e., starts an instance of FSM for s (see
step (B.14)); and, if passwords are used, the environment provides FSM with a list
of users and their passwords:

◦ ESM → FSM : (s, Init, [c→ pw, c′ → pw′, . . .])

The new instance of FSM then informs the adversary of its initialization and waits
for the adversaries approval (see next section); the list of users and their pass-

12Note that some of those mechanisms, while helping against online guessing attacks, open some possi-
bility for denial-of-service attacks against users.
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words is stored in FSM. The environment only has to initialize FSM once per
server identity s.

1. The environment supplies FSM with the necessary resources to receive a message
using step (B.15) in the form of a bit string of some length ns:

◦ ESM → FSM : (s, Resources, 1ns)

The resources are stored in FSM and the adversary is informed about the re-
sources.

2. The environment starts a new session (and thus, a new instance of FMX) by send-
ing the request to send a request on the client side (step (B.1)) and passing the request
payload pc. For this, the environment chooses a session number on the client side
(sidc), which is used in this session when FMX communicates with Ec

MX. The en-
vironment also has to pass resources to FMX in the form of a bit string of some
length nc, which enables FMX to receive a response to this request. If passwords
are used, the environment should provide the client’s password pw (if passwords
are not used, the environment may simply pass ε as password):

◦ Ec
MX → FMX : (s, c, sidc, Request, pc, pw, 1nc)

Upon receiving this request, FMX generates random session numbers for commu-
nicating with the server side of the environment (sids) and the adversary (sidA).
Then,FMX asks for the adversaries approval to send the request message (see next
section). If the adversary grants the transfer, FMX tries to obtain resources from
FSM (which FSM provides if resources are available, step (B.16)) and test whether
the password was correct (step (B.19)):

◦ FMX → FSM : (s, c, sids, GetSession)
◦ FSM → FMX : (s, c, sids, Session, 1ns)
◦ FMX → FSM : (s, c, sids, Testinternal, pw)
◦ FSM → FMX : (s, c, sids, Testinternal, true)

3. After approval by the adversary, if enough resources are available on the server
side and if the password is correct, the environment receives the request payload
on the server side on tape Es

MX (see step (B.3)):

◦ FMX → Es
MX : (s, c, sids, Request, pc)

4. Using sids, the environment is able to send a request to send a response on the server
side (step (B.4)) containing a response payload ps:

◦ Es
MX → FMX : (s, c, sids, Response, ps)

If the session has been expired by the adversary, see below, an error message is
sent back to Es

MX (step (B.7)):

◦ FMX → Es
MX : (s, c, sids, ResponseError)

Otherwise, FMX asks for the adversaries approval to send the message (see next
section).
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5. After approval by the adversary and if enough resources are available on the
client side, the response is passed on to the environment on the client side (see
step (B.5)):

◦ FMX → Ec
MX : (s, c, sidc, Response, ps)

4.2.4. Attacks and the Interface for the Adversary

Ideally, one would want to transfer messages without interference by the adversary.
Obviously, such an ideal functionality would not be realizable in a realistic way, as we
assume that the adversary may at least block all network communication.

Therefore, we explicitly allow the adversary to influence the transfer in the following
ways:

– Each time a message is passed from client to server or vice-versa, the adversary has to
give its approval. But unless the session is corrupted (see Section 4.2.5), the adversary
has no control over the contents: It may refuse to approve the message transfer, but
it is not able to alter the contents of the message or redirect it etc..

Therefore, in FMX, before the request message is passed from the client to the server,
the leakage of that message as well as the length of the password is sent to the ad-
versary (see step (B.2)). If the corresponding instance of FMX is not corrupted (see
next section), the adversary can only block the transfer (by not sending the approval
message) or approve the transfer:

◦ FMX → AMX : (s, c, sidA, Request, leak(1η , pc), |pw|, nc)
◦ AMX → FMX : (s, c, sidA, RequestOK, ε, ε)

Analogous messages are exchanged for the response message (step (B.5)):

◦ FMX → AMX : (s, c, sidA, Response, leak(1η , ps))
◦ AMX → FMX : (s, c, sidA, ResponseOK, ε)

This models the assumed ability of a real-world adversary to block messages from
being sent.

– When the request has been delivered to the environment on the server side, but the
environment has not (yet) requested to send a response, the adversary may expire the
session (step (B.6)):

◦ AMX → FMX : (s, c, sidA, Expire)

If, after expiration, the corresponding instance of FMX receives a request from the
environment to deliver a response, it answers with an error message containing
ResponseError (see previous section).

Allowing the adversary to expire sessions is necessary because we assume a realistic
server has only a limited capacity to store session data. Note that explicit expiration
is more than just allowing the adversary to block messages from reaching the client:
If a session is expired on the server side, the server can respond to the environment
with an error message. This is important, since in realistic situations, there also is a
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difference between a server that responds with an error message to the environment
and a server that tries, but unknowingly fails to deliver a message.

If passwords are used, the following additional abilities are modeled (also see Sec-
tion 4.2.2 above):

– The adversary is allowed to test passwords (step (B.18)): It can send an identity c
and a guess for this identities password pw to a server, which answers whether the
password is correct:

◦ ASM → FSM : (s, c, Test, pw)
◦ FSM → ASM : (s, c, Test, true)

The adversary can also ask a session of FMX whether the password provided by the
environment and stored in FMX is correct (step (B.9)):

◦ AMX → FMX : (s, c, sidA, Test)
◦ FMX → FSM : (s, c, Test, pw)
◦ FSM → ASM : (s, c, Test, true)

– If the adversary knows the correct password pw of a client c, it may start a server-only
session—an instance of FMX which only communicates with the environment on the
server side, but not on the client side. This models the realistic ability of an adversary
who knows a client’s password to initiate (forged) sessions under the identity of this
client without involving the client.

The adversary sends the request to start a server-only session toFSM containing some
payload pc, see step (B.17) (where cor reflects whether the session is corrupted, see
next section):

◦ ASM → FSM : (s, Session, c, cor, pw, pc)

In this case, FSM starts an instance of FMX which stores the information that this is a
server-only session, then generates sids and sidA as above, informs the adversary of
the session number sidA and delivers the payload to the environment on the server
side (step (B.8)):

◦ FSM → FMX : (s, c, Session, cor, pc)
◦ FMX → AMX : (s, c, sidA, Session)
◦ AMX → FMX : (s, c, sidA, SessionOK)
◦ FMX → Es

MX : (s, c, sids, Request, pc)

If the environment tries to respond to a server-only session, the response payload is
delivered to the adversary, but not to the environment on the client side since there
is no client involved in the session.

In contrast to server-only sessions, we call sessions initiated by the environment full
sessions.
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4.2.5. Corruption

FMX allows (partial) corruption by the adversary: The adversary may choose to corrupt
either the client side or the server side, or both sides. Corrupting the client side implies
that the adversary is able to act in the role of the client, more precisely, (i) read the
payload that the environment wants to send to the server, even if the payload was
confidential before, and (ii) manipulate the payload sent to the server. For the server
side, the situation is analogously.

In more detail, the corruption interface is as follows:

1. The adversary can corrupt each instance of FMX on both the client and server
sides using step (B.10):

◦ AMX → FMX : (s, c, sidA, Corrupt, c)
◦ FMX → AMX : (s, c, sidA, CorruptOK, c)
◦ AMX → FMX : (s, c, sidA, Corrupt, s)
◦ FMX → AMX : (s, c, sidA, CorruptOK, s)

2. The adversary can ask each corrupted instance of FMX to reveal the client’s and
the server’s payloads as well as the client’s password (see step (B.11)).

◦ AMX → FMX : (s, c, sidA, Reveal, c)
◦ FMX → AMX : (s, c, sidA, Reveal, c, pc, pw)
◦ AMX → FMX : (s, c, sidA, Reveal, s)
◦ FMX → AMX : (s, c, sidA, Reveal, s, ps, pw)

Internally,FMX ensures that, for each side, this is only done once per session using
variables revealedc and revealeds.

3. The adversary can manipulate the payloads of the request and response mes-
sages: Instead of just giving its approval to send a message in steps (B.2) or (B.5),
it may pass its own payload into the sessions and analogously manipulate the
password:

◦ FMX → AMX : (s, c, sidA, Request, leak(1η , pc), |pw|, nc)
◦ AMX → FMX : (s, c, sidA, RequestOK, p′c, pw′)
◦ FMX → Es

MX : (s, c, sids, Request, p′c)

Note that FMX delivers p′c instead of pc (but only if pw′ is the correct password,
otherwise the message is not delivered).

Analogous messages are exchanged for the response message:

◦ FMX → AMX : (s, c, sidA, Response, leak(1η , ps))
◦ AMX → FMX : (s, c, sidA, ResponseOK, p′s)
◦ FMX → Ec

MX : (s, c, sidc, Request, p′s)

4. If a full-session instance of FMX is corrupted on the server side, the adversary can
deliver a response to the client even before the delivery of the request message is
approved (if enough resources are available, see step (B.5)):
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◦ AMX → FMX : (s, c, sidA, ResponseOK, p′s)
◦ FMX → Ec

MX : (s, c, sidc, Response, p′s)

Internally, FMX ensures that this is only done once per session using a variable
repliedc.

5. The environment can use step (B.12) to ask an instance (both on the client side
and the server side) if it is corrupted:

◦ Ec
MX → FMX : (s, c, sidc, Corrupted)

◦ FMX → Ec
MX : (s, c, sidc, Corrupted, true)

◦ Es
MX → FMX : (s, c, sids, Corrupted)

◦ FMX → Es
MX : (s, c, sids, Corrupted, true)

Note that this is even possible after the session has been expired etc., thus, the
information whether a session was corrupted is never “lost”.

6. The environment can provide resources for both sides of corrupted instances (see
step (B.13)), and FMX informs the adversary of the resources:

◦ Ec
MX → FMX : (s, c, sidc, Resources, 1n)

◦ FMX → AMX : (s, c, sidA, Resources, c, 1n)

◦ Es
MX → FMX : (s, c, sids, Resources, 1n′)

◦ FMX → AMX : (s, c, sidA, Resources, s, 1n′)

While this is not necessary in the ideal world alone, it is necessary to securely
realize this functionality.

4.3. Realizing Secure Two-Round Message Exchange

In this section we describe three different realizations of FS2ME, see Table 4.1, where we
use different sets of parameters for FS2ME.

To describe the realizations, we first introduce some prerequisites and functionalities
defined elsewhere that we use in our functionalities. We then describe the implementa-
tion signature authenticated (PSA

S2ME) in detail and later point out the differences between
PSA

S2ME and the implementations confidential, signature authenticated (PCSA
S2ME) as well as

password authenticated (PPA
S2ME).

In Figure 4.4, we give an overview of the realizations including their connections to
the environment and the adversary.13

4.3.1. Prerequisites and Used Functionalities

In this section we introduce auxiliary functionalities that will be used by the protocol
functionalities later on. Examples of possible message transfers with these functionali-
ties can be found in Section 4.3.2 and subsequent sections.

13Note that this is a simplified and generalized illustration (for example, it includes encryption function-
alities although PSA

S2ME does not contain those).
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Figure 4.4.: An overview of a realization PS2ME connected to the environment and the
adversary
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Name Protocol Ideal Functionality Realization
SA SA2ME-1 (see Section 2.5.1) FS2ME(leakfull, false) PSA

S2ME
CSA CSA2ME-1 (see Section 2.5.2) FS2ME(leaklength, false) PCSA

S2ME
PA PA2ME-1 (see Section 2.5.3) FS2ME(leakfull, true) PPA

S2ME

Table 4.1.: Different realizations of FS2ME (The leakage algorithms leakfull and leaklength

are defined in Section 4.3.1.4.)

4.3.1.1. The Signature Functionality FSIG

For modeling digital signatures, we use the functionality FSIG from [KT08a, KT08b],
which can be implemented using any EUF-CMA secure signature scheme.

We give a brief overview of the functionality; for details of the ideal functionality
and securely realizations, we refer the reader to [KT08b]. FSIG consists of two parts, a
signature functionality and a verification functionality.

Upon initialization by the user, the signature functionality returns a public key pksig

to the user. Now, the user is able to send messages to the signature functionality, which
then returns a signature of that message. The verification functionality is called with
an additional id (so that each party using the verification functionality can use its own
copy of the verification functionality) and can be asked to verify the signature of a fiven
a message under a given public key.

Internally, the functionality lets the adversary choose the algorithms for signature
generation and verification, which are later executed each time a user instructs the
functionality to sign messages or verify signatures. But the functionality guarantees
that 1. any signature generated by the functionality is accepted as valid for the public
key used in the functionality, and 2. if the correct key is used for verification and the
functionality is not corrupted, the verification does only return “true” if the signature
has really been generated by the signature functionality; the latter is guaranteed by
keeping a list H of signatures that have been generated by the functionality.

FSIG has three parameters:

• Tsig is a set of tapes connecting to functionalities that are allowed to sign messages,

• Tver is a set of tapes connecting to functionalities that are allowed to verify mes-
sages, and

• psig is a polynomial used to bound the size and runtime of the keys and algorithms
used by FSIG.

In what follows, we use FSIG(psig) as an abbreviation for FSIG(Tsig, Tver, psig) by fix-
ing the following sets of (endpoints of) tapes for the rest of the thesis:

Tsig = {Csig, Ssig, SIsig, KSsig
sig} , Tver = {Cver, Sver, SIver, KSsig

ver} . (4.5)
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Note that FSIG allows dynamic corruption, the adversary may separately corrupt
each instance of the signature and verification functionality at any point.

4.3.1.2. The Signature Interface Functionality PSI

We give the adversary access to the signature functionality FSIG through the signature
interface functionality PSI defined in Appendix B.2.9: The functionality allows the ad-
versary to sign any bit string that does not have the format of a protocol message. As
explained in Section 2.3.2.3, this models that our protocol does not have exclusive ac-
cess to the keys used to sign the messages. For example, the same key can be used to
sign a protocol message and parts of the payload contained in that message.

The functionality PSI accepts requests from the adversary to (i) sign messages that
do not have the format of protocol messages and (ii) verify arbitrary signatures. The
restriction that the adversary may not sign bit strings that have the format of a protocol
message is implemented by the parameter except, see below.

In our realizations, the signature interface functionality appears in the scope of a
bang in the multi-user multi-session version, effectively meaning that the adversary has
access to all keys used in the protocol. As the signature interface needs resources from
the environment to sign messages for the adversary, it has an enriching input tape EEI.
Its counterpart in the ideal system FS2ME is a tape in the enriching input functionality
EI.

Exception Sets We make exceptions to the adversaries access to ensure that the adver-
sary cannot simply sign protocol messages and thus fake requests or responses without
corrupting keys.

To this end, we define the three exception functions exceptSA2ME−1, exceptCSA2ME−1,
and exceptPA2ME−1, each of the type {0, 1}∗ → {true, false}, used later on in our real-
izations for the parameter except.

• The exception function exceptPA2ME−1 returns true if the input is of the form
(From : ·, To : ·, Ref : ·, Body : ·), and false otherwise.

• The exception function exceptSA2ME−1 returns true if the input is of the form
(From : ·, To : ·, MsgID : ·, Time : ·, Body : ·) or if exceptPA2ME−1 returns true on the
same input, and false otherwise.

• The exception function exceptCSA2ME−1 returns true if the input is of the form
(From : ·, To : ·, MsgID : ·, Time : ·, Key : ·, Body : ·) or if exceptPA2ME−1 returns true
on the same input, and false otherwise.

4.3.1.3. The Signature Key Store Functionality F
KSsig

To coordinate how different IITM’s access a single instance of the signature functional-
ity, we define the ideal functionality of a signature key store (FKS) in Appendix B.2.7,
which allows clients, servers, and the signature interface functionality to retrieve
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trusted keys as well as the corruption status of keys. To be able to distribute the pub-
lic keys, FKS also initializes the instances of the signature functionality. The particular
form of this functionality is due to the fact that we want to use FSIG from [KT08a] as is.

4.3.1.4. The Encryption Functionality FENC

A realistic modeling of encryption in the IITM framework is a challenging task, as hy-
brid encryption is often used for large plaintexts (see Section 2.1.3.4). We use the func-
tionalities from [KT09a], which are equipped to handle asymmetric and symmetric en-
cryption schemes as well as hybrid encryption, to model both our usage of asymmetric
encryption (for PA2ME-1) and hybrid encryption (for CSA2ME-1).

The encryption functionality we use is composed of three parts: 1. Fpke is an ideal
functionality that can be realized by a secure public key encryption scheme, 2.Funauth

ltsenc is
an ideal functionality modeling unauthenticated symmetric encryption with long-term
keys14, 3. Funauth

senc is the ideal functionality that provides both unauthenticated symmet-
ric encryption with short-term keys as well as an interface to the two functionalities
above, which, in case of Fpke, can be used to model hybrid encryption.

In the above, “unauthenticated” refers to the fact that, alternatively, the symmetric
encryption functionalities in [KT09a] offers authenticated symmetric encryption, i. e.,
the guarantee that a valid ciphertext cannot be created without knowledge of the sym-
metric key. In contrast, for our purpose, the confidentiality guarantees suffice, i. e., we
can assume that the adversary is able to create valid ciphertexts for any key without
knowledge of that key.

Public Key and Symmetric Encryption We sketch how Fpke and Funauth
senc operate, for

details we refer the reader to [KT09a, KT09b].

Upon initialization by a user, Fpke lets the adversary specify algorithms for encryp-
tion, decryption and key generation, and the latter one is used to generate a key which
is stored in the functionality and sent to the user.

The user then is able to request the encryption of a message and provide a public
key for that encryption. If the key provided matches the one stored in the functionality,
the functionality uses a leakage algorithm (see next section) to compute the leakage of the
plaintext and then encrypt the leakage using the stored key and the algorithm provided
by the adversary. Then, if the decryption algorithm is able to decrypt the ciphertext
and return the leakage as expected, the original message together with the ciphertext
is stored in a list decTable in the functionality, and the ciphertext is returned to the user.
Thus, even if the encryption algorithm provided by the adversary leaks information (or
does not encrypt at all), the functionality guarantees that the leakage algorithm can be
used to bound how much information about the plaintext is leaked. If, on the other
hand, the key provided by a user when requesting to encrypt a message is not the one

14Note that Funauth
ltsenc is not used throughout this thesis but still included here as Funauth

senc and the theorems
in [KT09a], which are used below, include Funauth

ltsenc .
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stored in the functionality, nothing is guaranteed, i. e., the algorithm provided by the
adversary is directly used to encrypt the given message, and the ciphertext is returned
to the user.

Now if a user requests to decrypt a ciphertext (and the functionality is not corrupted),
the list decTable is used to lookup the plaintext corresponding to the ciphertext, and the
plaintext is returned if there is exactly one entry in the list for the given ciphertext.
Otherwise, the decryption algorithm provided by the adversary is used if there is no
matching ciphertext in decTable, or decryption may fail (the functionality returns ⊥) if
multiple plaintexts are found in the list for the given ciphertext. In this way, the func-
tionality guarantees that if the correct key is used for encryption and if no ciphertexts
collide, decryption of a ciphertext returned by the functionality is successful.

Similarly to above, upon initialization by the user, Funauth
senc lets the adversary specify

encryption and decryption algorithms. Again, the encryption algorithm receives only
the leakage of the plaintext that the user wants to encrypt, and a list decTable is used to
allow for decryption.

But contrary to above, key management is an important part of Funauth
senc : For reasons

explained in 4.5.4, the functionality does not hand out the symmetric keys to the user,
but instead uses pointers to keys: When the user requests the functionality to generate a
key, the functionality only returns a pointer to a freshly generated key that is stored in-
side the functionality. This user can then request the functionality to encrypt plaintexts
or decrypt ciphertexts using a pointer to a key.

The functionality also supports the encryption of keys: The user can include the
pointer to a key in the plaintext sent to the functionality, and the functionality replaces
the pointer by the actual key before passing the plaintext to the leakage and encryption
algorithms; and after decrypting a ciphertext received from the user, if the plaintext
contains a key, that key is replaced by a pointer before the plaintext is returned to the
user.

We note that FENC only allows static corruption, i. e., if a key is generated in Fpke

or Funauth
senc , the adversary has to decide at that point if it wishes to corrupt that key;

changing that decision later on is not possible. When a key is corrupted, both Fpke and
Funauth

senc do not use the leakage algorithm, but pass the given plaintext to the encryption
algorithm directly.

Leakage Algorithms Any encryption scheme that is equipped to handle plaintexts of
arbitrary lengths cannot prevent the leakage of information: From any ciphertext, it is
at least possible to deduce some restriction on the length of the corresponding plain-
text. Therefore, [KT09a] uses so-called leakage algorithms to precisely define how much
information an encryption scheme leaks.

Informally, a leakage algorithm takes as input the security parameter and a bit string
and returns a bit string—for a formal definition see [KT09a, KT09b]. A leakage algo-
rithm that leaks exactly the length of a message is a leakage algorithm such that 1. for all
valid input bitstrings, the algorithm returns a bitstring of the same length as the input
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string, and 2. for any two valid input bitstrings of equal length, the output distributions
of the algorithm for both inputs are the same.

Besides FENC, our ideal functionality FMX also takes a leakage algorithm as a param-
eter, for this purpose we define the following leakage algorithms:

• Full leakage: leakfull(x, y) returns y.

• Length leakage: leaklength(x, y) returns an element chosen uniformly at random
from {0, 1}|y|.

Note that leaklengthis an example for a leakage algorithm that leaks exactly the length
of a message.

Notation For the rest of this thesis, we fix the following sets of tapes:

TENC = (Tusers, Tadv) with Tusers = {C, S, KSae} , (4.6)

T lt
ENC = (T lt

users, Tlt
adv) with T lt

users = {Tlt | T ∈ Tusers} , (4.7)

T pke
ENC = (T pke

users, Tpke
adv ) with T pke

users = {Tpke | T ∈ Tusers} . (4.8)

The encryption functionalities use polynomials pst, plt, and pae to bound the algo-
rithms executed therein, as well as a leakage algorithm to model how much informa-
tion a ciphertext leaks. Now, we define a system of IITM’s called FENC composed of
the symmetric, symmetric long-term and public key encryption functionalities defined
in [KT09a]:

FENC(leak, pst, plt, pae) =

Funauth
senc (pst, leak, TENC) | !Funauth

ltsenc (plt, leak, T lt
ENC) | !Fpke(pae, leak, T pke

ENC) . (4.9)

4.3.1.5. The Encryption Key Store Functionality FKSae

Analogously to the key store for signature keys in Section 4.3.1.3, this key store, defined
in Appendix B.2.8, manages access to public keys used for public key encryption.

4.3.1.6. The Random Oracle Functionality FRO

As mentioned in Section 2.1.3.5, hash functions are hard to analyze formally, thus, one
often uses the random oracle model in spite of its weaknesses.

We also use a random oracle to model hash functions, although it cannot be securely
realized as shown in [CGH04]. We define a simple random oracle functionality FRO
for the IITM framework, see Appendix B.2.12. It models a random oracle that can
be accessed by clients and servers, but also by the adversary. We note that a similar
functionality was defined in [HMQ04] for the universal composition framework.
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In our functionality, to fulfill the resource restrictions, we have to limit the adver-
sary’s access, so we allow the adversary one call to the random oracle per call of an-
other machine (client or server). This is no real restriction as the environment is free
to start an arbitrary number of clients, and the security definition quantifies over all
environments, i. e., also over those environments that cooperate with the adversary to
start as many clients as necessary.

In the rest of this chapter, we refer to calls to the oracle as “hashing”, e. g., we say
that an IITM hashes a value if it sends the value to the random oracle functionality. In
addition, our proofs do not rely on any properties of the random oracle functionality
directly, but instead refer to the three security properties specified in Section 2.1.3.5
which are guaranteed by the random oracle functionality, namely preimage resistance,
second preimage resistance, and collision resistance.

4.3.1.7. The Local Clock Functionality FLC

The local clock functionality FLC, see Appendix B.2.11, models a clock that can be con-
trolled by the adversary, but with two limitations: First, the clock remains monotonous,
i. e., the adversary cannot decrease the value of the clock, and second, the adversary is
not called each time a participant uses its clock, i. e., the adversary cannot block the
access to the clock functionality.

4.3.2. Signature-Authenticated Two-Round Message Exchange

The system of IITM’s that later implements FS2ME(leakfull, false) is defined for any
polynomial psig by

PSA
S2ME(psig) = !PSA

C | !PSA
S | !FKSsig | !PSI(exceptSA2ME−1) | !FLC | !FSIG(psig) (4.10)

On the right hand side, the client and server functionalities PSA
C and PSA

S , see Appen-
dices B.2.1 and B.2.4, implement the client’s part and the server’s part of the protocol,
respectively. They are described in more detail below, and we illustrate the function-
alities by giving examples of possible sequences of message exchanged between the
ITIM’s.

4.3.2.1. The Client Functionality PSA
C

The client functionality, see Appendix B.2.1, uses one IITM instance per protocol ses-
sion, therefore, the client is mainly defined by only two steps, forwarding the request
from the environment to the network (i. e., the adversary), and forwarding the response
vice versa.

Assume that the environment instructs the client functionality running under iden-
tity c to send a payload pc to a server s using password pw and local session id sidc, and
to allocate nc resources for the reply. Before sending the request over the network in
step (B.21), the client generates a nonce r, retrieves its local time t from the local clock
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functionality, constructs the message mc = (From : c, To : s, MsgID : r, Time : t, Body : pc)
and signs the message, which is then sent over the network, i. e., to the adversary:

◦ Ec
MX → PSA

C : (s, c, sidc, Request, pc, pw, 1nc)
◦ PSA

C → FLC : (c, (C, s, r), GetTime)
◦ FLC → PSA

C : (c, (C, s, r), Time, t)
◦ PSA

C → F
KSsig : (c, (C, s, r), GetKey)

◦ F
KSsig → PSA

C : (c, (C, s, r), PublicKey, pksig
c )

◦ PSA
C → FSIG : (c, (C, s, r), Sign, mc)

◦ FSIG → PSA
C : (c, (C, s, r), Signature, σc)

◦ PSA
C → AC : (mc, σc)

Upon receival of a potential response message (ms, σs) with ms = (From : c, To : s,
Ref : r, Body : ps) in step (B.22), the client checks if it has enough resources to process
the response (and halts if that is not the case), checks the server’s signature σs (by re-
trieving the server’s key pksig

s , initializing the verifier and then requesting it to verify
the signature) and, if successful, forwards the response to the environment:

◦ AC → PSA
C : (ms, σs)

◦ PSA
C → F

KSsig : (s, (S, c, r), GetKey)

◦ F
KSsig → PSA

C : (s, (S, c, r), PublicKey, pksig
s )

◦ PSA
C → FSIG : (s, (S, c, r), C, Init)

◦ FSIG → PSA
C : (s, (S, c, r), C, Inited)

◦ PSA
C → FSIG : (s, (S, c, r), Verify, ms, σs, pksig

s )
◦ FSIG → PSA

C : (s, (S, c, r), Verified, true)
◦ PSA

C → Ec
MX : (s, c, sidc, Response, ps)

If the environment questions whether the client is corrupted, step (B.24), it answers
true if either its own signature scheme or the verifier that the server uses to verify the
validity of this client’s signature are corrupted (both conditions are checked directly by
asking the functionalities whether they are corrupted). Resources that the environment
provides for corruption are passed on to the signature scheme, see step (B.23).

4.3.2.2. The Server Functionality PSA
S

Contrary to the client functionality, the server functionality in Appendix B.2.4 is long-
lived in that only one instance of the server functionality is run per identity. This allows
the functionality, e. g., to store the list of previously seen message id’s. This has two
consequences:

1. The functionality has to cope with the situation that while processing a message
(e. g., checking its signature), another message from a different session of the pro-
tocol may arrive. In this case, our server implementation cancels the processing
of the first message and allows the second message to be processed.
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2. The functionality has to keep track of the sessions that is has processed, amongst
other reasons because each of these sessions can be corrupted separately. There-
fore, the server manages two lists, L and Lcor, of which the second one is only used
for corruption.

Each tuple in these lists has four components: a) The timestamp t of the message,
b) the nonce r sent by the client, c) the client’s identity c, and d) the session id sids
used when the server communicates with the environment.

If a message is received from a client and accepted (see step (B.39)), the server
inserts a tuple for that message in both L and Lcor. If L exceeds the capacity cap of
that server, it removes tuples from L (but not from Lcor) until L is small enough. If
a reply is sent out for one of the requests with an entry in L, this entry is updated
by replacing sids with ε to ensure that the environment cannot send a second reply
within the same session.

Note that while L complies with the memory restriction, in contrast, Lcor grows
monotonously and hence may violate the memory restriction, but as this list is
only used for keeping track of the corruption status of sessions, it would not be
stored in a real implementation.

As a first step (B.33), the server has to be initialized by the environment. The server
then asks the adversary to set the protocol’s parameters, namely the capacity cap and
the time tolerance tol+; it also initializes the local clock to get the initial time ts:

◦ ESM → PSA
S : (s, Init, [c→ pw, c′ → pw′, . . .])

◦ PSA
S → AS : (s, GetParameters)

◦ AS → PSA
S : (s, Parameters, cap, tol+)

◦ PSA
S → FLC : (s, S, GetTime)

◦ FLC → PSA
S : (s, S, Time, ts)

If a message mc = (From : c, To : s, MsgID : r, Time : tc, Body : pc) is received from the
network, the server 1. requests the client’s signature key pksig

c from the key store, see
step (B.35), 2. gets the local time from the time functionality, step (B.36), 3. initializes the
verifier and verifies the client’s signature, steps (B.37) and (B.38), 4. checks the proto-
col’s conditions for accepting messages, and if everything is in order, accepts the mes-
sage, modifies the list L according to the protocol (see above) and then forwards the
message to the environment, see step (B.39):

◦ AS → PSA
S : (mc, σc)

◦ PSA
S → F

KSsig : (c, (C, s, r), GetKey)

◦ F
KSsig → PSA

S : (c, (C, s, r), PublicKey, pksig
c )

◦ PSA
S → FLC : (s, S, GetTime)

◦ FLC → PSA
S : (s, S, Time, ts)

◦ PSA
S → FSIG : (c, (C, s, r), C, Init)

◦ FSIG → PSA
S : (c, (C, s, r), C, Inited)

◦ PSA
S → FSIG : (c, (C, s, r), Verify, mc, σc, pksig

c )
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◦ FSIG → PSA
S : (c, (C, s, r), Verified, true)

◦ PSA
S → Es

MX : (s, c, sids, Request, pc)

If the server receives a response payload ps for a session number sids from the envi-
ronment, it first retrieves information from L about that session. If there is no matching
entry in L with session number sids, an error message is sent to the environment mean-
ing that it is not or no longer possible to send a response in that session:

◦ Es
MX → PSA

S : (s, c, sid′s, Response, ps)
◦ PSA

S → Es
MX : (s, c, sid′s, ResponseError)

If instead a matching entry is found in L containing the nonce r, the server 1. updates
the list L by replacing the session id sids with ε, constructs the response message ms =
(From : c, To : s, Ref : r, Body : ps), and requests the signature key, step (B.40), 2. signs the
response message, step (B.41), and 3. sends the signed response message to the network
(i. e., the adversary), step (B.42):

◦ Es
MX → PSA

S : (s, c, sids, Response, ps)
◦ PSA

S → F
KSsig : (s, (S, c, r), GetKey)

◦ F
KSsig → PSA

S : (s, (S, c, r), PublicKey, pksig
s )

◦ PSA
S → FSIG : (s, (S, c, r), Sign, ms)

◦ FSIG → PSA
S : (s, (S, c, r), Signature, σs)

◦ PSA
S → AS : (ms, σs)

When the adversary resets the server using step (B.43), the list L is cleared and any
processing of a request or response is stopped.

Similar to the client, the environment can ask whether a session is corrupted on
the server side. Therefore, as explained above, the server keeps a list Lcor of all ses-
sions, even those that were deleted from L. For each session, if the environment calls
step (B.46), the server answers true if either its own signature scheme used in that ses-
sion or the verifier that the client uses in this session to verify the server’s signature
are corrupted (again, this is checked by asking the corresponding instances of the func-
tionalities whether they are corrupted). Resources that the environment provides for
corruption are passed on to the signature scheme used in that session, see step (B.45).

4.3.3. Confidential Signature-Authenticated Two-Round Message Exchange

The system of IITM’s implementing FS2ME(leaklength, false) is defined for any leakage
algorithm leak and any polynomials psig, pst, plt, and pae by

PCSA
S2ME(leak, psig, pst, plt, pae) =

!PCSA
C | !PCSA

S | !FKSsig | !FKSae | !PSI(exceptCSA2ME−1) | !FLC |

!FSIG(psig) | FENC(leak, pst, plt, pae) . (4.11)

This implementation is similar to the one in Section 4.3.2, so we mainly point out the
differences to that section below.
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4.3.3.1. The Client Functionality PCSA
C

The client functionality is presented in Appendix B.2.2. When asked to send a request
payload pc in step (B.25), the client first generates a nonce r and gets the local time t
as above. Then, the client obtains both a pointer ptr to a fresh key k generated for the
symmetric encryption part of FENC as well as the public encryption key pkae

s of the
server from the corresponding key store:

◦ Ec
MX → PCSA

C : (s, c, sidc, Request, pc, pw, 1nc)
◦ PCSA

C → FLC : (c, (C, s, r), GetTime)
◦ FLC → PCSA

C : (c, (C, s, r), Time, t)
◦ PCSA

C → FENC : ((s, c, r), KeyGen)
◦ FENC → PCSA

C : ((s, c, r), KeyGen, ptr)
◦ PCSA

C → FKSae : (s, (C, c, r), GetKey)
◦ FKSae → PCSA

C : (s, (C, c, r), PublicKey, pkae)

Next, the client encrypts the key k (using the pointer to that key) under pkae
s , and then

uses the pointer to encrypt the request payload under key k:

◦ PCSA
C → FENC : (s, (C, c, r), Initialize)

◦ FENC → PCSA
C : (s, (C, c, r), Completed)

◦ PCSA
C → FENC : (s, (C, c, r), Enc, pkae, (Key, ptr))

◦ FENC → PCSA
C : (s, (C, c, r), Ciphertext, $k)

◦ PCSA
C → FENC : ((s, c, r), Enc, ptr, pc)

◦ FENC → PCSA
C : ((s, c, r), Ciphertext, $c)

The client constructs the request message mc = (From : c, To : s, MsgID : r, Time : t,
Key : $k, Body : $c), including the encrypted key $k and the encrypted plaintext $c, and
signs and sends the request message:

◦ PCSA
C → F

KSsig : (c, (C, s, r), GetKey)

◦ F
KSsig → PCSA

C : (c, (C, s, r), PublicKey, pksig
c )

◦ PCSA
C → FSIG : (c, (C, s, r), Sign, mc)

◦ FSIG → PCSA
C : (c, (C, s, r), Signature, σc)

◦ PCSA
C → AC : (mc, σc)

Upon receival of a potential response message ms = (From : c, To : s, Ref : r, Body : $s)
in step (B.26), in addition to the above for SA2ME-1, the client decrypts the response
payload using its pointer to k:

◦ AC → PCSA
C : (ms, σs)

◦ PCSA
C → F

KSsig : (s, (S, c, r), GetKey)

◦ F
KSsig → PCSA

C : (s, (S, c, r), PublicKey, pksig
s )

◦ PCSA
C → FSIG : (s, (S, c, r), C, Init)

◦ FSIG → PCSA
C : (s, (S, c, r), C, Inited)

◦ PCSA
C → FSIG : (s, (S, c, r), Verify, ms, σs, pksig

s )
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◦ FSIG → PCSA
C : (s, (S, c, r), Verified, true)

◦ PCSA
C → FENC : ((s, c, r), Dec, ptr, $s)

◦ FENC → PCSA
C : ((s, c, r), Plaintext, ps)

◦ PCSA
C → Ec

MX : (s, c, sidc, Response, ps)

If the environment questions whether the client is corrupted, step (B.28), it answers
true if 1. its own signature scheme, 2. the verifier that the server uses to verify the
validity of this client’s signature, 3. the server’s encryption functionality for this ses-
sion, or 4. the symmetric key generated for this session are corrupted. Resources that
the environment provides for corruption are passed on to the signature scheme, see
step (B.27).

4.3.3.2. The Server Functionality PCSA
S

The server functionality, presented in Appendix B.2.5, is mainly the same as PSA
S . But

in addition, before accepting the message, the server has to decrypt the ciphertext $k to
obtain the key k (step (B.53)) and use the resulting pointer ptr to decrypt the ciphertext
$c and obtain the request plaintext pc in step (B.54). The server also stores the pointer
ptr in the list L.

◦ PCSA
S → FENC : (s, Dec, $k)

◦ FENC → PCSA
S : (s, Plaintext, (Key, ptr))

◦ PCSA
S → FENC : ((s, c, r), Dec, ptr, $c)

◦ FENC → PCSA
S : ((s, c, r), Plaintext, pc)

When asked by the environment to respond, the server encrypts the response pay-
load ps using the pointer to the key stored in L, see step (B.55):

◦ PCSA
S → FENC : ((s, c, r), Enc, ptr, ps)

◦ FENC → PCSA
S : ((s, c, r), Ciphertext, $s)

Similar to the client, upon being asked for a session’s corruption status, the server
answers true if 1. its own signature scheme used in that session, 2. the verifier that
the client uses in this session to verify the server’s signature, 3. the server’s encryption
functionality for this session, or 4. the symmetric key generated for this session are
corrupted. Resources that the environment provides for corruption are passed on to
the signature scheme used in that session (step (B.60)).

4.3.4. Password-Authenticated Two-Round Message Exchange

The system of IITM’s implementing FS2ME(leakfull, true) is defined for any leakage al-
gorithm leak and any polynomials psig, pst, plt, and pae by

PPA
S2ME(leak, psig, pst, plt, pae) =

!PPA
C | !PPA

S | !FKSsig | !FKSae | !PSI(exceptPA2ME−1) | !FLC |

!FSIG(psig) | FENC(leak, pst, plt, pae) | FRO . (4.12)
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As this implementation, again, is similar to the ones in Section 4.3.2 and 4.3.3, we
mainly point out the differences below.

4.3.4.1. The Client Functionality PPA
C

The client functionality, see Appendix B.2.3, does not use digital signatures to sign the
request, but instead, see step (B.29), generates a secret message id r, hashes it to obtain
Hr, hashes the request mc = (From : c, To : s, MsgID : Hr, Time : t, Body : pc) to obtain
the value Hmc , and then encrypts a token m′c = (SecMsgID : r, Pass : pw, MsgHash : Hmc)
containing the password pw:

◦ Ec
MX → PPA

C : (s, c, sidc, Request, pc, pw, 1nc)
◦ PPA

C → FRO : (GetRO, r)
◦ FRO → PPA

C : (RO, Hr)
◦ PPA

C → FLC : (c, (C, s, Hr), GetTime)
◦ FLC → PPA

C : (c, (C, s, Hr), Time, t)
◦ PPA

C → FRO : (GetRO, mc)
◦ FRO → PPA

C : (RO, Hmc)
◦ PPA

C → FKSae : (s, (C, c, Hr), GetKey)
◦ FKSae → PPA

C : (s, (C, c, Hr), PublicKey, pkae
s )

◦ PPA
C → FENC : (s, (C, c, Hr), Initialize)

◦ FENC → PPA
C : (s, (C, c, Hr), Completed)

◦ PPA
C → FENC : (s, (C, c, Hr), Enc, pkae

s , m′c)
◦ FENC → PPA

C : (s, (C, c, Hr), Ciphertext, $c)
◦ PPA

C → AC : (mc, $c)

A response is accepted in step (B.30) if it references the hash value of r. As above for
the case of SA2ME-1, the client checks the server’s signature; thus, the messages are the
same as in Section 4.3.2.1.

If the environment questions whether the client is corrupted (step (B.32)), it answers
true if the server’s encryption functionality for this session is corrupted. Resources
that the environment provides for corruption are not passed on, because the client does
not use a signature scheme, see step (B.31).

4.3.4.2. The Server Functionality PPA
S

The server functionality is modified accordingly: Upon receival of a message (mc, $c)
with mc = (From : c, To : s, MsgID : Hr, Time : tc, Body : pc), it decrypts the token $c to
obtain m′c = (SecMsgID : r, Pass : pw, MsgHash : Hmc) in step (B.65). Differently to the
checks performed in SA2ME-1, it does not check a signature (as there is none), but it
computes the hash values of r and the message, and it checks if they match Hr and Hmc ,
respectively, and if the password matches the password database of the server:

◦ AS → PPA
S : (mc, $c)

◦ PPA
S → FLC : (s, S, GetTime)
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◦ FLC → PPA
S : (s, S, Time, ts)

◦ PPA
S → FENC : (s, Dec, $c)

◦ FENC → PPA
S : (s, Plaintext, m′c)

◦ PPA
S → FRO : (GetRO, r)

◦ FRO → PPA
S : (RO, H′r)

◦ PPA
S → FRO : (GetRO, mc)

◦ FRO → PPA
S : (RO, H′mc

)
◦ PPA

S → Es
MX : (s, c, sids, Request, pc)

When a response is sent in step (B.67), the server uses an instance of the signature
functionality identified by the hash value Hr of r, and the server includes the hash
value of r in its response ms = (From : s, To : c, Ref : Hr, Body : ps), allowing the client to
relate the response to its request.

◦ Es
MX → PPA

S : (s, c, sids, Response, ps)
◦ PPA

S → FRO : (GetRO, r)
◦ FRO → PPA

S : (RO, Hr)
◦ PPA

S → F
KSsig : (s, (S, c, Hr), GetKey)

◦ F
KSsig → PPA

S : (s, (S, c, Hr), PublicKey, pksig
s )

◦ PPA
S → FSIG : (s, (S, c, Hr), Sign, ms)

◦ FSIG → PPA
S : (s, (S, c, Hr), Signature, σs)

◦ PPA
S → AS : (ms, σs)

Again, if the server is asked for a session’s corruption status, it answers true if either
its own signature scheme used in that session or the verifier that the client uses in
this session or the server’s encryption functionality are corrupted. Resources that the
environment provides for corruption are passed on, see step (B.72).

4.4. Results and Proofs

Our theorem states that the three protocols defined above securely realize the three
different parameterizations of the ideal functionality FS2ME:

Theorem 4.1. For any polynomials psig, pst, plt, and pae, and any leakage algorithm leakenc
that leaks exactly the length of a message, we have

PSA
S2ME(psig) ≤BB FS2ME(leakfull, false) (4.13)

PCSA
S2ME(leakenc, psig, pst, plt, pae) ≤BB FS2ME(leaklength, false) (4.14)

PPA
S2ME(leakenc, psig, pst, plt, pae) ≤BB FS2ME(leakfull, true) (4.15)

Note that in Section 4.5, we show a corollary of this theorem that states that the func-
tionalities on the left-hand sides of the above statements are further securely realizable,
using, among others, secure signature and encryption schemes.
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In the rest of the section, we prove Theorem 4.1. A full formal proof could, e. g.,
establish a bisimulation (see [Par81] or the proof in Section 5.1.3) between the system
consisting of the real protocol and that consisting of the ideal protocol and a simulator.
We, instead, define a simulator for each of the statements in the theorem and then argue
why the key points in a correctness proof of the bisimulation can be carried out.

But first, we briefly argue why our functionalities fulfill the necessary restrictions on
resources defined in [Kü06b, pages 8 et seq.].

Firstly, all versions of the systems FS2ME and PS2ME are well-formed as defined in Sec-
tion 4.1.1, i. e., the graph induced by enriching tapes between IITM’s is acyclic, see
Figures 4.3 and 4.4.

Secondly, the restrictions on the running time and the length of messages written on
output tapes are fulfilled by all our IITM’s: For each message m that is accepted on a
non-enriching tape, 1. we either change the state of the IITM to ensure that the same
message is not accepted multiple times, or, if a step is carried out multiple times (for
example, step (B.18)), the functionality uses a variable like n in FSM that keeps track
of the amount of resources they received from the environment and decreases n (or
sets it to zero) when m is accepted; 2. if m has variable length and may provoke an
output message depending on the length of the input, we check if enough resources are
available (for example, see step (B.17)), and stop if not.

4.4.1. Signature-Authenticated Two-Round Message Exchange

Proof of (4.13) in Theorem 4.1. For the rest of the proof, we fix a polynomial psig and we
write PSA

S2ME instead of PSA
S2ME(psig) and FSA

S2ME instead of FS2ME(leakfull, false).
To prove (4.13), we construct a simulator SSA

S2ME (given in Appendix B.3.1) such that
the systems E | A | SSA

S2ME | FSA
S2ME and E | A | PSA

S2ME are computationally indistin-
guishable for every adversary A and every environment E .

The main idea of the simulator is that while interacting with E , A, and all machines
that are active in the ideal functionality FSA

S2ME, it simulates every machine that would
be present in a run of the system PSA

S2ME in such a way that the environment receives
the exact same messages on the I/O interface from the machines in FSA

S2ME as it would
receive from the machines in PSA

S2ME, and analogously presents network traffic toA that
is indistinguishable to the traffic a real instance of PSA

S2ME would generate on the same
inputs.

The key point of the proof is that even in the ideal functionality, the adversary may
completely control whether a message sent by an instance reaches the environment—
hence the simulator essentially consists of book-keeping and allowing the delivery of
messages by the ideal functionality as soon as delivery happens in the simulated real
functionality.

To show that this simulation indeed works as intended, we argue that for every se-
quence of messages and instructions sent by A or E , the simulation is correct in the
following sense:
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After a message from the adversary or the environment has been processed and con-
trol is given back to the adversary or the environment, the state of each machine of
PSA

S2ME is identical in the simulation (called the “ideal world” in the proof) and in a hy-
pothetical execution of the real protocol (with the same inputs and same random coin
tosses, called the “real world”).

First, we look at the simulator’s variables: It keeps a list in the variable sessions,
where, for each running protocol session, the server and client identities, the session
id sidA used by the ideal functionality, and the nonce chosen by the simulator for that
session are stored. The functions nonce and sid are used to easily access tuples from
the session list. The simulator also keeps an array status, which stores the status of
simulated instances of PSA

C and PSA
S .

Now, observe that the following invariants hold after a message from the adversary
or the environment is processed and control is given back to the adversary or the envi-
ronment:

(I) For each instance of PSA
C running in the real world identified by (s, c, r), there

is a simulated session in the simulator with an entry (s, c, sidA, r) in the list
sessions, and an instance of FMX running in the ideal world which is identified
by (s, c, sidA); and vice-versa.

(II) For each instance of PSA
S running in the real world identified by s, there is a simu-

lated server in the simulator with state[s] 6= ⊥, and an instance of FSM is running
in the ideal world which is identified by s; and vice-versa

(III) For each tuple (t, r, c, sids) with sids 6= ε in the list L of an instance of PSA
S in

the real world, there is a corresponding instance of FMX in the ideal world with
state = 3, in particular, the instance of FMX is not expired; and vice-versa

(IV) With overwhelming probability, the following holds for all tuples (s, c, sidA, r) in
the list sessions:

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the client side if and only if the signature functionality that is identified
by (c, (C, s, r)) or the verification functionality identified by (c, (C, s, r), S) is
corrupted.

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the server side if and only if the signature functionality that is identified
by (s, (S, c, r)) or the verification functionality identified by (s, (S, c, r), C) is
corrupted.

This invariant may be broken in a negligible number of cases as explained below
in the paragraph about the signature functionality.

We now argue separately for each machine in PSA
S2ME that, after a message from the

adversary or the environment has been processed and control is given back to the ad-
versary or the environment, the state of the ideal world systems (as far as observable
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by the environment and the adversary) are the same as in a hypothetical execution of
the real protocol (with the same inputs and same random coin tosses). To that end,
we list the messages or instructions that the machines may receive, and argue why the
consequences in both the ideal and the real world are the same.

We note that the simulator and the machines in FSA
S2ME do not accept any other mes-

sages from the adversary or the environment than the machines in PSA
S2ME, hence, the

following reasoning suffices.

The Client PSA
C .

(B.21) In the real functionality, the receival of a message matching this step starts a
new instance of the client functionality PSA

C , which wraps, signs, and sends the
request. In the ideal functionality, this starts an instance of FMX (cf. invariant (I)),
which forwards its wish to send a request to the simulator (steps (B.1) and (B.91)),
which then exactly mimics the steps of PSA

C in processRequestRequest.

(B.22) In the real functionality, when a response message is received from the adver-
sary, it is checked and, if the checks are successful, the payload is sent to the
environment. The simulator performs exactly the same checks in step (B.94)
and processResponseApproval, and if successful, forwards the payload to the
corresponding instance of FMX, see invariant (I). Now, depending on its corrup-
tion status on the server side, FMX passes on the payload sent by the simulator or
the payload stored in its internal state, see step (B.5).

Hence, using invariant (IV), we distinguish between corrupted and uncorrupted
signature and verification functionalities.

If either one of these functionalities is corrupted, we do not know if the signature
is indeed valid. But then we know that the corresponding instance of FMX is also
corrupted on the server side. Thus, it accepts the payload sent by the simulator
and passes it on to the environment (even if the request has not been delivered
yet, see variable repliedc in step (B.5)).

So we can assume that neither the signature nor the verification functionality is
corrupted, but the signature is valid. We now have to inspect FSIG from [KT08b]
to see what guarantees we can draw from that. First observe that we always call
the verification functionalities with the correct keys as we use our key store. Then
we can conclude that if the signature functionality is not corrupted, but states
that the signature is “valid”, the message was indeed signed by this functionality
(as the message is contained in the set H of FSIG). As we included the nonce
r and the constant C in the prefix for the signature scheme, we know that if no
collision of message id’s occurred (hence, with overwhelming probability), then
the signature functionality signed only one response message (note that it may
have signed multiple messages through PSI, but none of those could have been a
request message through the exception set in PSI). Therefore, we know that FMX
holds exactly the payload in its internal state that the simulator passes on to FMX,
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hence, it makes no difference if FMX ignores the payload sent by the simulator
and just forwards the payload stored internally.

(B.23) Resources received from the environment are passed on to F
KSsig in both the real

world and the ideal world through steps (B.13) and (B.98).

(B.24) According to invariant (IV), the environment receives the same answer in both
the real and the ideal world.

The Server PSA
S .

(B.33) If the environment starts a new instance of PSA
S in the real world, a new instance

of FSM is started in the ideal world (step (B.14)), which lets the simulator run
processServerInit, simulating what happens in the real world, and then pass-
ing control back to FSM; also see invariant (II).

(B.34) In the real world, the server simply stores the new resources, while in the ideal
world, the message is received from FSM in step (B.15) and then passed on to the
simulator, who also simply stores it in step (B.96).

(B.35)–(B.39) First, we note that in the real world, the processing of a request is divided
into the five steps (B.35) to (B.39), as the adversary may interfere between each of
these steps; e. g., when the server wants to retrieve the client’s key from the key
store in step (B.35), the adversary may block this retrieval.

To not block the whole server, we give the adversary the possibility to just deliver
another message m′ to the server while the server, e. g., waits in state 2 during
the processing of another message m received earlier; but then, we cancel the
processing of m and just start to process m′. In the ideal world, this is reflected in
that the simulator runs processRequestApproval concurrently, but cancels any
execution of processRequestApproval (and processResponseRequest) as soon
as a new message arrives.

Then, in processRequestApproval, the simulator executes the same steps as the
real server would in steps (B.35) to (B.39), with one exception: If a tuple is deleted
from the list L in PSA

S , the simulator explicitly expires the corresponding instances
of FMX, cf. invariant (III).

If the message is approved and the server in the real world would deliver it to the
environment, the simulator sends the payload to the corresponding instance of
FMX. Analogously to the reasoning for the client above in step (B.22), it does not
matter if the client side of the instance of FMX is corrupted, as the correct payload
is always delivered to the environment.

(B.40)–(B.42) Here, the situation with the three steps (B.40) to (B.42) is analogous to the
five steps discussed above; the simulator summarizes the processing in step (B.93)
and in processResponseRequest, and the processing may be interrupted (i. e.,
canceled) by the adversary.
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But first, note that due to invariant (III), we know that if the environment re-
sponds to a non-existent or an expired session, it receives an error message in
both the real and the ideal world: In the real world, the server simply handles
all requests from the environment and decides using the list L, while in the ideal
world, there are two cases, both handled in step (B.7): An expired instance of FMX
sends an error message directly, but if the environment tries to call a session that
never existed, a new instance of FMX is started, sends the error message, and then
terminates. For the environment, both variants are not distinguishable.

Again, the simulator executes the same steps as the real server does, but while the
real server updates the entry in the list L by overwriting sids with ε, the simulator
simply updates a boolean value in its copy of L from false to true. Both in the
real and the ideal world, the resulting message is sent to the adversary.

(B.43) If the server is reset in the real world, mainly the list L is emptied. This is re-
flected in the ideal world by the simulator in that it expires all existing sessions in
step (B.95), cf. invariant (III).

(B.45) In the real world, the server passes the resources on to the corresponding signa-
ture scheme. In the ideal world, the resources are received fromFMX in step (B.13)
and then sent to the simulator, who passes it on to the simulated signature
scheme (B.98).

(B.46) As above for the client, according to invariant (IV), the environment receives
the same answer in both the real and the ideal world. But here we note that the
environment ist able to question the corruption status of any session, even expired
ones. This is reflected in the real world by using separate lists, L and Lcor, where
deletions and updates only are applied to the first list. In the ideal world, FMX
even answers in expired sessions, see step (B.12).

The Signature Functionality FSIG(psig). The simulator directly mimics all instances of
the ideal signature functionality, thus, its state is the same in both worlds. In addition,
through steps (B.99) and (B.100), the simulator ensures that invariant (IV) holds.

Note that the steps (B.99) and (B.100) do not cover all cases—this is the reason why
invariant (IV) only holds with overwhelming probability: The adversary may corrupt
signature or verification functionalities before a corresponding instance of FMX is ini-
tialized. But as the nonce r identifying the instances that are later connected by the
simulator to an instance of FMX is chosen randomly from {0, 1}η , the probability that
the adversary “hits” such an instance is negligible.

The Key Store F
KSsig , the Local Clock FLC, and the Signature Interface PSI. These three

functionalities are simulated by the simulator as-is, i. e., they are exactly the same in
both worlds.
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4.4.2. Confidential Signature-Authenticated Two-Round Message Exchange

Proof of (4.14) in Theorem 4.1. For the rest of the proof, fix a leakage algorithm leak that
leaks exactly the length of the message and polynomials psig, pst, plt, and pae. As above,
we write PCSA

S2ME instead of PCSA
S2ME(leak, psig, pst, plt, pae) and we use FCSA

S2ME instead of
FS2ME(leaklength, false) for the rest of the proof.

To prove (4.14), we again construct a simulator SCSA
S2ME, see Appendix B.3.2, such that

the systems E | A | SCSA
S2ME | FCSA

S2ME and E | A | PCSA
S2ME are computationally indistin-

guishable for every adversary A and every environment E .

The simulator SCSA
S2ME mainly works as SSA

S2ME above. An additional key point in this
proof is the “transitivity” of the leakage algorithms involved: In the ideal world, our
simulator usually only learns the leakage (under leaklength) of the payloads in messages.
But as the algorithm leak leaks exactly the length of the message, it does not matter if we
provide that leakage algorithm with an original payload or with that payload’s leakage
unter leaklength.

Again, we argue that for every sequence of messages and instructions sent by A or
E , the simulation is correct in the following sense:

After a message from the adversary or the environment has been processed and con-
trol is given back to the adversary or the environment, the state of each machine of
PCSA

S2ME is identical in the simulation and in a hypothetical execution of the real protocol,
except for the (randomly chosen) leakage.

Analogously to the invariants (I) to (IV), the following invariants hold after a message
from the adversary or the environment is processed and control is given back to the
adversary or the environment:

(V) For each instance of PCSA
C running in the real world identified by (s, c, r), there is

a simulated session in the simulator with an entry (s, c, sidA, r) in the list sessions,
and an instance of FMX running in the ideal world identified by (s, c, sidA); and
vice-versa

(VI) For each instance of PCSA
S running in the real world identified by s, there is a

simulated server in the simulator with state[s] 6= ⊥, and an instance of FSM is
running in the ideal world which is identified by s; and vice-versa

(VII) For each tuple (t, r, c, sids, ptr) with sids 6= ε in the list L of an instance of PCSA
S in

the real world, there is a corresponding instance of FMX in the ideal world with
state = 3, in particular, the instance of FMX is not expired; and vice-versa

(VIII) With overwhelming probability, the following holds for all tuples (s, c, sidA, r) in
the list sessions:

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the client side if and only if at least one of the following four is corrupted:

a) the signature functionality identified by (c, (C, s, r)),
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b) the verification functionality identified by (c, (C, s, r), S),

c) the encryption functionality identified by (s, (C, c, r)), or

d) the symmetric key to which a pointer is stored in ptrs[s, c, r] by the sim-
ulator.

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the server side if and only if at least one of the following four is corrupted:

a) the signature functionality identified by (s, (S, c, r)),

b) the verification functionality identified by (s, (S, c, r), C),

c) the encryption functionality identified by (s, (C, c, r)), or

d) the symmetric key to which a pointer is stored in ptrs[s, c, r] by the sim-
ulator.

Again, we argue for the machines in PCSA
S2ME that, after a message from the adversary

or the environment has been processed and control is given back to the adversary or
the environment, the observable state of the ideal world systems is the same as in a
hypothetical execution of the real protocol (with the same inputs and same random
coin tosses).

This is enough for the proof as the simulator and the machines in FCSA
S2ME only accept

messages from the adversary or the environment that are also accepted by machines in
PCSA

S2ME.

The Client PCSA
C .

(B.25) As above, as soon as the environments starts a client instance in the real world,
it starts an instance of FMX in the ideal world, which in turn leads the simula-
tor to start a simulated instance of PCSA

C , see invariant (V). The instructions in
step (B.25) are mimicked by the simulator in processRequestRequest, including
the additional steps for keeping the payload confidential:

In both worlds, the client instructs the encryption functionality to generate a fresh
symmetric key and return a pointer to that key. Next, the client encrypts the sym-
metric key using asymmetric encryption by sending the tuple (Key, ptr) to the
encryption functionality. Then, the client sends the request payload and the key
pointer to the encryption functionality, which encrypts the payload using sym-
metric encryption. The client includes both ciphertexts in the request message.

If both symmetric and asymmetric encryption are uncorrupted, the messages sent
to the adversary are generated differently in both worlds, so we have to argue
why the messages sent to the adversary are indistinguishable.

But first we note that if either the symmetric key generated for encrypting the pay-
load is corrupted (which the adversary can only decide upon generation, not at a
later time) or the public key of the server is corrupted (which also is modeled as
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static corruption, i. e., the adversary can only corrupt the key at generation time),
the simulator retrieves the original payload from the client (using step (B.11)).

Now, assume that both encryption schemes are uncorrupted. We first take a look
at the real world. Here, the client sends the original payload pc to the encryption
functionality, which then uses the leakage algorithm leak to determine a bit string
that is encrypted using the algorithm provided by the adversary. In the ideal
world, the functionality FMX applies leaklength to pc, sends the resulting bit string
p′c to the simulator, which passes it on to the encryption functionality where leak
is applied to p′c.

Thus, we know that the leakage algorithm leak in both worlds is applied to bit
strings of the same length. But then, using the assumption that leak leaks exactly
the length of the message, we know that the outputs are indistinguishable.

(B.26) Both in the real and in the ideal world, the (simulated) client checks any incom-
ing response message, decrypts the contained payload, and forwards the plain-
text to the environment if no error occurred.

In more detail, the real client (in step (B.26)) as well as the simulator (in subroutine
processResponseApproval) first perform the same checks as in SA2ME. After
those checks, the plaintext is decrypted using the key generated for the request
message. At this point, we again have to argue why the same (correct) plaintext
is received by the environment in both worlds.

Invariant (VIII) allows us to distinguish between corrupted and uncorrupted sig-
nature, verification, and encryption functionalities.

If one of those is corrupted, we do neither know if the signature is valid nor do
we know if the ciphertext was encrypted by that encryption scheme. But again,
in this case, the corresponding instance of FMX is corrupted on the server side, so
FMX accepts any payload delivered by the simulator in step (B.5)—thus, the exact
same payload is computed and delivered in both worlds (without any guarantee
which bit string that is).

But when we assume that neither signature nor verification nor encryption func-
tionalities are corrupted, then the same arguments as above for SA2ME hold, and
we know that the message is the server’s valid response sent by the server in
step (B.57) (in the real world) or the simulator in processResponseRequest (in
the ideal world, respectively).

(B.27) The received resources are passed on to F
KSsig in both worlds. Note that, in con-

trast to the signature functionality, the encryption functionality does not require
resources for corrupted operations.

(B.28) See invariant (VIII).
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The Server PCSA
S .

(B.47) Starting new servers is similar to the implementation PSA
S (cf. invariant (VI)),

with the only difference being that both the real server and the simulator initialize
the server’s key, which gives the adversary the only opportunity to corrupt that
key.

(B.48) Again, resources from the environment are treated equally in both worlds, see
steps (B.15) and (B.107).

(B.49)–(B.54) In processRequestApproval, the simulator mimics what the real server
does in steps (B.49) to (B.54): fetching the public key needed for verifying the
signature from the key server, getting the current time, verifying the client’s sig-
nature, decrypting the symmetric session key (using the server’s public key for
the asymmetric encryption scheme) as well as the payload (using the symmetric
session key that was just decrypted), and finally executing the what the protocol
specifies on the server side. Again, if tuples are deleted from L in PCSA

S , the sim-
ulator explicitly expires the corresponding instances of FMX, cf. invariant (VII).

As above, in case of corruption, nothing is guaranteed for the plaintext, e. g., the
decryption might have failed (thus, pc = ⊥ is sent to the environment). But
again, this is consistent in both worlds, cf. invariant (VIII). If no corruption oc-
curred that is relevant to this session, a correct signature—as above—allows us to
conclude that the message indeed originated from the simulator, and hence, the
corresponding instance of FMX holds the correct plaintext, which is delivered to
the environment in both worlds.

(B.55)–(B.57) In processResponseRequest, the simulator mimics what the real server
does in steps (B.55) to (B.57): checking if sending a response is still permitted,
encrypting the payload using the symmetric session key stored in L, and signing
the response.

As for the request message, the simulator only receives the leakage of the response
payload from the ideal functionality. Again (see our reasoning for step (B.25)
above), we know that it makes no difference if the simulator sends the received
leakage to FENC or if PCSA

S sends the real payload to FENC, since FENC chooses
a bit string uniformly at random from the same distribution in both cases that is
then encrypted in FENC.

(B.58) If the server is reset in the real world, mainly the list L is emptied. This is re-
flected in the ideal world by the simulator in that it expires all existing sessions in
step (B.106), cf. invariant (VII).

(B.60) Again, the server passes on the resources to the corresponding signature scheme
in both worlds.

(B.61) Again, according to invariant (VIII), the environment receives the same answer
in both the real and the ideal world.
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The Signature Functionality FSIG(psig). Again, the ideal signature functionality is di-
rectly simulated, and the simulator, through steps (B.111) and (B.112), ensures that in-
variant (VIII) holds.

The Encryption Functionality FENC(leak, pst, plt, pae). Similar to the above, the simula-
tor directly simulates the ideal encryption functionality and uses step (B.110) to ensure
that invariant (VIII) holds.

The Key Stores F
KSsig and FKSae , the Local Clock FLC, and the Signature Interface PSI.

These four functionalities are simulated by the simulator as-is, i. e., they are exactly the
same in both worlds.

4.4.3. Password-Authenticated Two-Round Message Exchange

Proof of (4.15) in Theorem 4.1. For the rest of the proof, fix a leakage algorithm leak that
leaks exactly the length of the message and polynomials psig, pst, plt, and pae. Analo-
gously to above, we write PPA

S2ME instead of PPA
S2ME(leak, psig, pst, plt, pae) and FPA

S2ME in-
stead of FS2ME(leakfull, true) for the rest of the proof.

Again, to prove (4.15), we construct a simulator SPA
S2ME (given in Appendix B.3.3) such

that, for every adversaryA and every environment E , the system E | A | SPA
S2ME | FPA

S2ME
is computationally indistinguishable from the system E | A | PPA

S2ME.

Besides the intended usage of the protocol, the adversary may also start server-only
sessions if it knows the password of a client by simply generating a request message.
Note that in such sessions, the adversary is able to control the value r; therefore, the
adversary can provoke a collision: The adversary starts a server-only session using
some value r, then sends enough messages to force the server to delete the entry with
r from its list L, and then starts another server-only session using the same value r.
Therefore, we cannot assume that no collisions occur for the values of r over the run of
the simulator, but we can assume the following:

1. For full sessions, the probability that a client chooses a secret message id r that
collides with a secret message id previously chosen by another client or the ad-
versary is negligible.

2. Similarly, for full sessions, the collision resistance of the hash function (or the
random oracle in our case) implies that the probability that a client chooses a
secret message id r such that r’s hash value collides with the hash value of a secret
message id previously chosen by another client is negligible.

3. As long as the protocol only publishes the ciphertext of r and the hash value of
r, the probability that the adversary is able to “guess” the value of any r used in
a full session is also negligible (given that the adversary did not, e. g., obtain that
value by corrupting that session).
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4. From the above, the function sid¬so of our simulator is able to either unambigu-
ously select an entry in the list sessions or return ⊥ if no matching entry exists.

Similar to the proofs above, some invariants hold after a message from the adver-
sary or the environment is processed and control is given back to the adversary or the
environment:

(IX) For each instance of PPA
C running in the real world identified by (s, c, r), there is

a simulated session in the simulator with an entry (s, c, sidA, r, false) in the list
sessions, and an instance of FMX running in the ideal world which is identified by
(s, c, sidA); and vice-versa

(X) For each instance of PPA
S running in the real world identified by s, there is a simu-

lated server in the simulator with state[s] 6= ⊥, and an instance of FSM is running
in the ideal world which is identified by s; and vice-versa

(XI) For each tuple (t, r, c, sids) with sids 6= ε in the list L of an instance of PPA
S in

the real world, there is a corresponding instance of FMX in the ideal world with
state = 3, in particular, the instance of FMX is not expired; and vice-versa

(XII) With overwhelming probability, the following conditions hold for all tuples (s, c,
sidA, r, server-only) in the list sessions:

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the client side if and only if the encryption functionality identified by
(s, (C, c, r)) is corrupted.

• The instance of the functionality FMX identified by (s, c, sidA) is corrupted
on the server side if and only if the encryption functionality identified by
(s, (C, c, r)), the signature functionality identified by (s, (S, c, H(r))) or the
verification functionality identified by (s, (S, c, H(r)), C) is corrupted.

Again, we now inspect each machine in PPA
S2ME and argue that, after a message from

the adversary or the environment has been processed and control is given back to the
adversary or the environment, the state of the ideal world systems (as far as observable
by the environment and the adversary) are the same as in a hypothetical execution of
the real protocol (with the same inputs and same random coin tosses).

The Client PPA
C .

(B.29) In general, the simulator receives the request through step (B.1) and then mim-
ics step (B.29) of the real functionality in processRequestRequest, ensuring that
invariant (IX) holds.

One difference is that the simulator initially does not know the password used
by the client, as only the length of the password is sent in step (B.1). If the pass-
word is encrypted for a key that is known to the adversary, this would enable the
adversary to distinguish both worlds. Thus, we have to distinguish if the public
encryption key of the server is known to the adversary, i. e., if the key is corrupted.
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As the public key encryption functionality offers only static corruption and as the
simulator retrieves the key for public key encryption from the key store (which
initializes the key if that has not been done previously), the simulator knows if
the key is corrupted after retrieving the key.

Also, if the key is corrupted, then we know that the corresponding instance of
FMX is also corrupted: If the key was corrupted before the call to the subroutine
processRequestRequest, then the instance of FMX is corrupted as a first step in
processRequestRequest; otherwise, if the key is corrupted by the adversary dur-
ing the processing of processRequestRequest, step (B.122) ensures that the in-
stance of FMX is corrupted because of its entry in sessions. Hence, invariant (XII)
holds.

Therefore, if the key is corrupted, the corresponding instance of FMX reveals the
password upon request by the simulator. Now the simulator can use the pass-
word which would also be used in the real world. Otherwise, if the key is not
corrupted, the simulator just uses a random bitstring of length lpw as the pass-
word.

We again use that by the definition of FENC (more precisely, by the definition of
Fpke in [KT09b]), for an uncorrupted key, only the leakage of a message is really
encrypted. Thus, for the resulting ciphertext in case of an uncorrupted key, it does
not matter if the simulator used the original password or another bitstring of the
same length.

(B.30) The case of the response is similar to PSA
C , as the server signs its response similar

to the signature-authenticated version. As usual, the simulator mimics the steps
of the client in the real world.

If there is no full session (see below where we discuss the server’s steps), the sim-
ulator simply drops the message (see processResponseApproval). This is equiva-
lent to what happens in the real world, as clients are only running for full sessions.

If, on the other hand, an entry for a full session is fetched from sessions by the
simulator, we know that in the real world, a client exists that accepts the message
in CheckAddress mode, as it performs the same check, namely testing if the Ref
value of an incoming message matches Hr.

Now, if a message is accepted by the simulator, it forwards the contained payload
to an instance of FMX. Again (as above for PSA

C ), depending on the corruption
status on the server side, the addressed instance of FMX passes on the payload
sent by the simulator or the payload stored in its internal state, see step (B.5).

If the functionality of FMX identified by sidA is corrupted on the server side, by
invariant (XII) we do not know if the signature scheme or the encryption scheme
used by the server is corrupted, butFMX accepts the payload sent by the simulator
and passes it on to the environment, just as the real server does.

The interesting part here is the case in which the functionality of FMX identified
by sidA is not corrupted on the server side. Then, by invariant (XII) we know that
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neither the server’s public key for encryption nor the signature or verification
scheme identified by Hr are corrupted. But there may be two problems: First, the
adversary may know the client’s password, and thus could be able to start server-
only sessions between this client and the server, and then try to make the client
accept one of the server’s responses from these sessions. Secondly, the response
messages do not directly contain the secret message id r, but only the hash value
of r.

So, assume the accepted message contained some Ref value Hr. By the collision
resistance of the hash function (or the random oracle, in our case), we know that
with overwhelming probability only one full session exists in which a client chose
a value r such that the hash value of r equals Hr. From the definition of FENC
in combination with the assumption that the server’s key is not corrupted we
know that the adversary cannot obtain any knowledge from the ciphertext of the
request message (in which r is encrypted) as only the length of r is leaked (which
the adversary already knows). The preimage resistance of the hash function (or
the random oracle) then guarantees that the adversary, from knowing just the
value Hr, has only a negligible chance to compute any value r′ such that the hash
value of r′ equals Hr. Thus, the adversary cannot obtain a validly signed response
containing Hr using server-only sessions.

Then we can conclude that the signature functionality identified by Hr signed
only one message, and as the (uncorrupted) verification functionality already
stated that the signature is “valid”, the message was indeed signed by the sig-
nature functionality and we know that the corresponding instance of FMX holds
exactly the payload in its internal state that the simulator passes on to FMX.

(B.31) As the client does not use a signature scheme, in both the real world and the
ideal world, resources received are just dropped.

(B.32) According to invariant (XII), the environment receives the same answer in both
the real and the ideal world.

The Server PPA
S .

(B.33) As above for PSA
S , the simulator is called by FSM (see step (B.14)) and runs

processServerInit, simulating what happens in the real world; see invariant (X).

(B.63) This step is analogous to the corresponding step (B.63) in PSA
S .

(B.64)–(B.37) If a message is received and processed by the server in the real world in
steps (B.64) to (B.66), the simulator runs processRequestApproval and executes
analogous steps to what the real server would execute.

As above for PSA
S , a difference is that if a tuple is deleted from the list L in PPA

S ,
the simulator explicitly expires the corresponding instances of FMX, again see
invariant (XI).
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Another difference is the handling of passwords: In the real world, the server
has access to all passwords and can simply test if the user-supplied password is
correct. The simulator, on the other hand, does not have access to the password
function U of a server, it has to use steps (B.9) and (B.18) to determine if a single
password is correct. We have to distinguish two cases, depending on the corrup-
tion status of the encryption key of s and the secret message id r contained in the
encrypted part $c of the message:

1. The server’s key is not corrupted and the secret message id r belongs to a
full session, i. e., cor[s] = false and sid¬so(s, c, r) 6= ⊥.

First, by definition of FENC, the adversary is not able to learn the secret mes-
sage id r encoded in request messages sent to him; and as the value r is cho-
sen randomly, the adversary has a negligible probability to “hit” a valid se-
cret message id r by just guessing. Hence, we know that this encrypted part
$c was created by the simulator in an earlier run of processRequestRequest.

As explained above for step (B.29), the simulator in this case just encoded an
arbitrary bit string in processRequestRequest instead of the real password.
But through invariant (XI) we know there is a corresponding instance ofFMX
containing the password provided by the environment for this session.

Thus, the simulator can simply ask the corresponding instance of FMX to
send the password to FSM for testing.

2. The server’s key is corrupted, or the secret message id r does not belong to a
full session, i. e., cor[s] = true or sid¬so(s, c, r) = ⊥.

If the server’s key is corrupted, then the simulator encoded the correct pass-
word in processRequestRequest. If the secret message id r does not belong
to a full session, we know that the simulator did not create that encrypted
part (note that entries are only removed from L, not from sessions). There-
fore, in both cases, the simulator just uses the password that is encoded in
the request message and sends it to FSM for testing.

A third difference between the ideal world and the real world is the explicit mod-
eling of server-only sessions: As the password of a user may be known to the
adversary, it may start a session that appears to be originating from a client, but
where the request message simply is forged by the adversary.

While in the real world, a server may accept such a message and not even notice
that the real client was not involved, our functionality FMX has an explicit mod-
eling of server-only sessions, and the simulator knows if a session is initiated by
the adversary without a client by simply looking up the secret message id r in the
sessions list using the function sid¬so. Thus, if a server-only session is started by
the adversary and the message is accepted for delivery by the simulator, it sends
a message to FSM which starts a new instance of FMX.

Now, for full sessions, we again have to argue why the correct payload is deliv-
ered to the environment by FMX. In case of a corrupted session of FMX on the
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client side, this is clear as FMX just delivers the payload sent by the simulator. If,
however, the session of FMX on the client side is not corrupted, then we know
that cor[s] = false. Thus, we know that the encrypted part $c was created by
processRequestRequest as we only consider full sessions. Hence, the hash value
Hmc included in $c is the same as the one calculated when the request was sent.
As we also checked that the payload sent by the adversary has a hash value of
H′mc

= Hmc , by the assumptions that the hash function (or in our case the random
oracle) is second-preimage resistant, we know that the payload delivered by the
adversary is the same as the one stored in the corresponding session of FMX.

(B.67)–(B.69) For the response, the server part is similar to PSA
S : Both in the real and in

the ideal world, the server signs the response message (using a signature scheme
identified by Hr) and delivers the signed response message to the adversary.

(B.70) Again, a reset in both world results in an empty list L, and again, the simulator
empties the list by expiring all sessions in processServerReset, also see invari-
ant (XI).

(B.72) This step is analogous to the corresponding step (B.45) in PSA
S .

(B.73) According to invariant (XII), the environment receives the same answer in both
the real and the ideal world.

The Signature Functionality FSIG(psig) and the Encryption Functionality FENC(leak, pst,
plt, pae). These functionalities are simulated, using steps (B.122) through (B.124), to
ensure that invariant (XII) holds.

The Key Stores F
KSsig and FKSae , the Local Clock FLC, and the Signature Interface PSI.

These four functionalities are simulated by the simulator as-is, i. e., they are exactly the
same in both worlds.

4.5. Implementing the Protocols

Our realizations PS2ME above still contain ideal functionalities that cannot be imple-
mented on a real machine directly. Hence, in this section, we explain how the ideal
functionalities occurring in PS2ME can be securely realized, with the exception of FRO
(see notes in Sections 2.1.3.5 and 4.3.1.6).

4.5.1. Uniform and Non-Uniform Adversaries

The security notions for signature and encryption schemes that we use later in this
section and that we recalled in Section 2.1.3 are defined with respect to uniform ad-
versaries, i. e., the adversary does only receive the security parameter and no auxiliary
input.
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In contrast, the IITM framework (as well as [Can04]) defines security with non-
uniform environments which may receive additional auxiliary input (and as the en-
vironment may cooperate with the adversary, this results in non-uniform adversaries),
see Section 4.1.2.

Thus, when bridging the gap between ideal functionalities in the IITM framework
and realizations that use signature or encryption schemes secure in a “traditional”
sense, one either has to adapt the traditional security notions to the non-uniform case
or restrict the IITM environment and adversary to the uniform case.

As explained in [KT08b, KT09b], for our case, both approaches would be possible.
Here, we follow the second approach: We use ≤BB-noaux to denote secure realization as
defined above, but for the case that the environment does only receive ε as auxiliary
input. See [KT08b] for more details.

4.5.2. Signature Functionality FSIG

The signature functionality FSIG can be implemented using an EUF-CMA secure signa-
ture scheme as shown in [KT08b, Theorem 5]. More precisely, the authors of that paper
define a straight-forward “wrapper” PSIG such that if Ω is an EUF-CMA secure signa-
ture scheme that is bounded by some polynomial psig, and if Tsig and Tver are defined
as above, PSIG(Ω, Tsig, Tver) ≤BB-noaux FSIG(Tsig, Tver, psig).

In our realizations above, FSIG occurs in the multi-session multi-user version FSIG.

Hence, if FSIG is implemented by a signature scheme, this would imply that for each
user and each session (i. e., for each message that is sent), a new instance of the signature
scheme is used.

This is unrealistic and can be avoided by applying a joint-state theorem [KT08b, The-
orem 6] allowing different sessions to use the same key: Essentially, a wrapper P JS

SIG
managing different sessions is used to access the signature functionalities. Thus, in-
stead of one key per party and per session (!FSIG), one can use only a single key for

each party (!FSIG), as in a realistic public key infrastructure.
Note that this adds unnatural prefixes to messages, see Section 4.6.4 for comments

and an alternative approach.

We note that we communicate with signature schemes with prefixes pid, sid where
pid is the identity of a party (usually the client’s or the server’s identity) and sid is a
session identifier. In contrast, P JS

SIG expects the prefixes to messages to appear in the

order sid, pid, . . .. Therefore, with P JS′

SIG we denote the version of P JS
SIG where the order of

these two prefixes is inverted.

4.5.3. Signature Interface PSI

In our modeling, the signature interface PSI grants the adversary (limited) access to the
keys used in the protocol. Usually, one would not want to realize this functionality
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at all, i. e., not allow any outside access to the keys. To that end, one can simply im-
plement PSI by a functionality P dummy

SI that just accepts the incoming resources from the
environment, but does not send out any messages, see Appendix B.2.10.

Note that, however, including the signature interface functionality allowed us to
prove the protocol secure even if the adversary has access to the keys. For some fur-
ther notes on this functionality, see Section 4.6.

4.5.4. Encryption Functionality FENC

The encryption functionality FENC defined in Section 4.3.1.4 is composed of a symmet-
ric encryption functionality Funauth

senc , a symmetric encryption functionality with long-
term keys Funauth

ltsenc and a public key encryption functionality Fpke.
As we do neither use the symmetric encryption functionality with long-term keys in

our functionalities nor offer any way for the environment to access that functionality,
we can implement the protocol without realizing this functionality, as it receives no
messages at all.

4.5.4.1. Symmetric Encryption Funauth
senc

In [KT09b], Küsters and Tuengerthal prove that, in general, any IND-CCA2 secure sym-
metric encryption scheme can be used to implement the symmetric part of FENC, but
there are a few restrictions, which we explain first.

In general, Funauth
senc cannot be implemented due to the commitment problem (for de-

tails, see, e. g., [BP04, CF01]): Consider some protocol that uses the ideal symmetric en-
cryption functionality to encrypt some plaintext x under some freshly-generated and
uncorrupted key k, resulting in some ciphertext y.

If the protocol not only sends the plaintext x and the ciphertext y to the adversary,
but also reveals the key k to the adversary (e. g., by encrypting it under a corrupted
key), the adversary may be able to decrypt y and, in the ideal world, detect that the
decryption does not match x (but the leakage of x), while in the real world, y correctly
decrypts into x. Thus, the adversary would able to distinguish both worlds.

In addition, key cycles (e. g., encrypting a key k1 under a key k2 and vice versa, see,
e. g., [AR02]) also pose a problem as the usual security definitions are not able to cope
with that kind of situations.

Therefore, in [KT09b], Küsters and Tuengerthal do only prove that the symmetric
encryption functionality in FENC can be securely realized by any IND-CCA2 secure
symmetric encryption scheme as long as FENC is accessed by a functionality that does
not cause the commitment problem and that is used order respecting:

Roughly speaking, used order respecting protocols do not encrypt a key after it has
been used in an encryption operation, which is a simple and natural restriction imply-
ing that no key cycles occur.
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Our functionalities adhere to those restrictions, i. e., they do not encrypt a key after
it has been used in an encryption operation and they never reveal keys that are not
already known to the adversary:

The functionalities offer no interface for the environment or another functionality to
directly use the encryption functionality or obtain keys, so we only have to argue that
the operations performed by our functionalities themselves are used order respecting
and do not cause the commitment problem.

First, our functionalities are used order respecting: The only key (of Funauth
senc ) that is

encrypted by another key is the symmetric key which is referred to by ptr in step (B.25);
and ptr is encrypted only once, namely under pkae, before any plaintext is encrypted
under ptr.

Then, our functionalities do not cause the commitment problem: There is no oper-
ation which uses a key for encryption that can later get known to the adversary. The
adversary may corrupt both asymmetric as well as symmetric keys upon generation,
and if an adversary corrupted a server’s public key, each symmetric key that is en-
crypted with that corrupted key in step (B.25) is marked “known” (added to Kknown by
FENC). But once any of these key is used for encryption, the “known” status is fixed for
the rest of the execution.

Thus, using [KT09b, Theorem 10], we are able to substitute Funauth
senc in FENC by a real-

ization that uses any IND-CCA2 secure symmetric encryption scheme using a wrapper
Psenc from using [KT09b].

4.5.4.2. Public Key Encryption Fpke

The public key encryption functionality Fpke in [KT09b] is a slightly simplified version
of the functionality Fpke defined in [KT08b]. As shown in [KT08b, Theorem 7] (and also
stated in [KT09b, Theorem 7]), the functionality can be realized by a IND-CCA2 secure
public key encryption scheme (again, without auxiliary input) using a straight-forward
wrapper Ppke.

4.5.5. The Key Store Functionalities F
KSsig and FKSae

Our key store functionalities serve not only as a technical tool to simplify access to
public keys (e. g., by initializing the key only once upon first access to a key), but also
offer the clients and servers a method of fetching a party’s public key from a trusted
source:

The adversary can prevent the key store functionalities from delivering keys to other
functionalities, but it cannot influence which key is sent (without corrupting the corre-
sponding signature or encryption scheme).

Hence, any implementation would have to include some form of trust model. As dis-
cussed in Section 2.1.3.7, there are multiple methods for deciding if a key is trusted, but
the methods usually involve some physical interaction to check the (physical) identity
of a party that wants to establish trust in its key.
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Therefore, we do not give a realization for the key store but argue that in real applica-
tions, one can implement both versions of FKS using standard techniques for building
a public key infrastructure: In an implementation, the key store could be a local sub-
routine which,

1. locally stores and manages a single public/private key pair (which’s public key
has been published to a key server), and,

2. when requested to retrieve the public key of another party, fetches that key from
a key server and locally checks its validity by using a trust model, e. g., a pre-
defined set of certification authorities.

We note that one would assume that in such a scenario, the adversary could block
access to a key server, which is modeled in our key store functionality in that the ad-
versary may block any user from obtaining a key from the key store.

4.5.6. The Local Clock Functionality FLC

On the one hand, the local clock functionality FLC over-approximates the powers of a
realistic adversary: usually, one would not assume that the adversary can manipulate
the local clock of a user before each access to that clock.

On the other hand, if the adversary is given access at all, our monotonicity restriction
may be too strict.

Thus, there is no single natural implementation for this functionality; and as the IITM
framework does abstract from “real time”, there is no single “realistic” implementation
inside the IITM framework. Therefore, we do not give a realization for FLC, however,
we discuss several aspects of possible implementations that are easy to prove secure.

First, note that it is possible to use the ideal functionality itself as an implementation
as it features no unrealistic messages etc.

But it is also easy to replace the local clocks by one clock per party or even a synchro-
nized global clock: Roughly speaking, a single instance of FLC could be accessed by all
sessions of one party or even by all parties through a wrapper that synchronizes the
clocks; and a simulator for proving that a party’s clock implements FLC or that a global
clock implements FLC would simply maintain a single clock state and distribute it to

the local clocks upon their requests.
It would also be possible to restrict the adversary’s access (both for individual local

clocks or synchronized clocks), e. g., to only set the initial value of the clock; the value
could then advance each time that the functionality is activated, e. g., by a fixed or a
randomly chosen value.

4.5.7. Implementing the Protocols

Theorem 4.1 now yields the following corollary:
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Corollary 4.2. Let psig1 , psig2 , pst, plt, and pae be polynomials, let leak be a leakage algorithm
that leaks exactly the length of a message, let Ω be an EUF-CMA secure signature scheme that is
bounded by psig1 , let Σse be an IND-CCA2 secure symmetric encryption scheme that is bounded
by pst, let Σae be an IND-CCA2 secure public key encryption scheme that is bounded by pae. Let
P JS′

SIG, P ′SIG, Psenc, and Ppke be the (systems of) IITM’s referenced above. Define the following
systems of IITM’s:

P̂SIG = P JS′

SIG(Tsig, Tver, psig1 , psig2) | !P ′SIG(Ω, Tsig, Tver) (4.16)

P̂ENC = Psenc(Σse) | Fltsenc(plt, leak, T̂ lt) | !Ppke(Σae, T̂ pke) (4.17)

P̂SA
S2ME = !PSA

C | !PSA
S | P̂SIG | !P dummy

SI | !FLC | !FKSsig (4.18)

P̂CSA
S2ME = !PCSA

C | !PCSA
S | P̂SIG | P̂ENC | !P dummy

SI | !FLC | !FKSsig | !FKSae (4.19)

P̂PA
S2ME = !PPA

C | !PCSA
S | P̂SIG | P̂ENC | !P dummy

SI | !FLC | !FKSsig | !FKSae | FRO (4.20)

Then, we have:

P̂SA
S2ME ≤BB-noaux FS2ME(leakfull, false) , (4.21)

P̂CSA
S2ME ≤BB-noaux FS2ME(leaklength, false) , (4.22)

P̂PA
S2ME ≤BB-noaux FS2ME(leakfull, true) . (4.23)

Proof. The corollary follows from Theorem 4.1 by 1. Theorems 5, 6 and 7 from [KT08b],
2. Theorem 10 and Corollary 3 from [KT09b], 3. the above reasoning that our function-
alities do not cause the commitment problem and are used order respecting, and 4. a
trivial simulator for P dummy

SI .

4.6. Comments and Caveats

In this section, we comment on some aspects of the IITM framework or simulation-
based security paradigms.

4.6.1. Roles of the Environment and the Adversary

When designing functionalities, one gains insights in the multiple roles that the envi-
ronment and the adversary play.

The main role that the environment is supposed to model is the role of the layer above
the functionalities under analysis; for example, this may be a set of programs or another
protocol layer. But the environment also has to provide resources to the functionalities
on enriching tapes, and it has to check the corruption status of the functionalities (see
below on notes why this is necessary).

The adversary also plays at least three roles: 1. Routing (and possibly manipulating)
the network traffic, 2. corrupting functionalities and taking over their operation, and
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3. serving as an universal quantifier for parameters (see, e. g., step (B.33), or the signa-
ture functionality FSIG, where the adversary may determine the signature scheme).

Especially because of the resources, the modeling of functionalities is, in part, unnat-
ural.

For example, we included the signature interface PSI in PS2ME to give the adversary
partial access to the signature functionality in the implementation, but naturally, we
wanted to leave that out of the ideal functionality (which may be realized by a pro-
tocol that does not use digital signatures at all). But the signature functionality needs
resources from the environment, so PSI has an enriching input tape from the environ-
ment.

Thus, we have to equip FS2ME with a corresponding tape, which is realized in the
enriching input functionality FEI. But FEI is not only an artificial addition to the ideal
functionality, it is also too generic to easily evaluate its consequences—this is unde-
sirable for an ideal functionality, which is the equivalence of a “security definition” in
more specific models (like the Bellare–Rogaway framework in Section 3).

Similarly, if one wants to really implement a realization given in this thesis, one has
to closely distinguish which messages sent to the adversary and expected from the ad-
versary only concern corruption and universal quantification (see above for examples).
For corruption messages is seems obvious what has to be dropped; but, e. g., one also
has to drop questioning the adversary for parameters in step (B.33), and dropping or
changing messages may always have non-trivial security implications.

The multiple roles of environment and the adversary are also referenced when talk-
ing about correctness of protocols in simulation-based frameworks, see next section.

4.6.2. Correctness Definition

In [BR93a], Bellare and Rogaway did not only define security notions for protocols, but
also correctness notions (which we added to our setting in Section 3.4.1); in contrast,
simulation-based frameworks lack a strict definition for correctness of protocols.

This is especially interesting because the security definition allows any functionality
F to be securely realized by a modification F ′ of that F that does not send out any
messages to the adversary (the simulator that proves that F ′ realizes F simply blocks
all communication between the F and the adversary), cf. the notion of a non-trivial
protocol in [CLOS02]; this is similar to other security definitions where any protocol that
does not send any message at all is secure in the sense that it leaks no information at
all.

But it is also possible to define realizations (and prove them secure) that only par-
tially implement a given ideal functionality. For example, our functionalities FS2ME
could be securely realized by implementations that only deliver requests, but never de-
liver responses; a simulator would then simply block all communication between the
adversary and the ideal functionality related to response messages.

These are examples where it is obvious from the realization that something is “miss-
ing”, but there may be more subtle examples.
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Figure 4.5.: A hypothetical approach for a correctness definition in the IITM framework

So if one wants to define correctness in the IITM framework, an approach that comes
to mind is to swap the roles of ideal and real functionalities: As illustrated in Figure 4.5,
the adversary would have direct access to the ideal functionality F and may start any
number of instances of the ideal functionality, while the simulator has to use the real
system P to produce results that are indistinguishable from the ideal world. Thus, we
would be able to guarantee that the real protocol works as the ideal functionality in all
but a negligible number of cases.

In mathematical terms, we would simply swap the roles in the definition of security
and say that a real system P correctly implements an ideal functionality F if there is a
simulator S such that for all adversaries A and environments E for S | P or F , the
systems E | A | S | P and E | A | F are computationally indistinguishable.

If we then prove that a realization correctly implements an ideal functionality, we
know that it is not a partial implementation (nor an implementation that does not send
any messages at all, see above).

Note that, naturally, the composition results would transfer to the case of correctness,
i. e., if a protocol uses several ideal functionalities, we can use a modular proof to show
that the protocol is a correct implementation.

This definition would also force us to model ideal functionalities closer to what is
realizable, so we would over-approximate less: Consider a functionality like FSIG that
precisely models the abilities of an adversary to corrupt that functionality. Now if we
define an ideal functionality that is implemented by some realization that uses FSIG
(e. g., when we define an ideal functionality likeFS2ME), it is easy to model corruption in
FS2ME by the corruption macro introduced in [KT08b] (as done in [KSW09b, KSW09c]).
But this over-approximates the abilities of the adversary upon corruption, as it allows it
to send arbitrary messages to the environment. In contrast, in this thesis, the modeling
of corruption in FS2ME is more complex, but also more precise, and thus, we would be
closer to developing a provable correct implementation of the ideal functionality.

But this definition does not yield a natural definition for “correctness” since it is easy
to define protocols which are “correct” in this sense, but not in an intuitive sense:

Take any protocol P that securely and correctly implements an ideal functionality F .
We then define a simple variation P∗ that appends the bit 0 to each outgoing message,
but expects that each incoming message ends with 1 and strips this last bit before pro-
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cessing the message like P does. Now P∗ also securely and correctly implements F , as
both simulators may append and strip these bits as necessary. But calling P∗ a correct
protocol is unnatural, as it relies on the network to change messages before delivery. So,
the definition only guarantees that a realization is as powerful as an ideal functionality
in some sense.

In addition, for functionalities that expect parameters from the adversary (like FSIG,
which expects to receive the algorithms for the signature scheme from the adversary),
our potential correctness definition leaves it to the simulator to decide which parame-
ters to chose. Thus, parameters that are universally quantified in the security definition
become existentially quantified in the correctness definition.

When analyzing the situation more closely, we observe that by distinguishing be-
tween the roles of the adversary (network, corruption, universal quantification), we see
that for correctness, we would usually want to treat these three roles of the adversary
(which are then taken on by the simulator) differently:

• We would want to limit the network part to deliver messages to the correct recip-
ient, but possibly quantify over all interleavings of messages of different sessions
etc. This is what is done with the benign adversary in Section 3.

• The simulator should be free to simulate any corruption done in the ideal world
by the adversary, so we would not want to restrict the corruption part.

• For parameters, we usually would not want existential quantification (which
would only prove that the protocol works correctly for a fixed set of parameters),
and perhaps nor universal quantification (e. g., in the case where the parameter is
a signature scheme as in FSIG) either, but instead, e. g., quantification over a fixed
set.15

We remark that we believe that the results that could be obtained from this (a more
precise definition of correctness) do not justify the complexity added by explicitly dis-
tinguishing these types of communication with the adversary (or the simulator in case
of correctness).

4.6.3. Technicalities

When modeling (systems of) IITM’s, one has to take care of a few technical, but non-
trivial tasks.

4.6.3.1. Resources

When modeling systems of IITM’s, one has to conform to resource restrictions, i. e., the
systems have to be well-formed and the length of output messages is restricted by the

15This could be achieved by parameterizing the functionalities and then stating that for each choice of pa-
rameters fulfilling some restriction, the protocol could be proven correct; however, in some situations
(like the choice of protocol parameters in step (B.33)), one wants to prove the protocol correct even if
the parameters are chosen per identity.
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length of input received on enriching tapes.
Our functionality FMX receives its request payload on an enriching tape on the client

side, so it could deliver its payload to the environment on the server side without break-
ing resource restrictions. However, when realizing the functionality, the server receives
the payload on a network tape, i. e., a consuming tape. Thus, it cannot deliver payloads
of arbitrary length to the environment, but has to use a buffer size (see variable n in the
versions of PS). To make both worlds indistinguishable, we have to also introduce this
concept to the ideal world. But as the instances of FMX do not connect to the environ-
ment on the server side before the payload is delivered, we need another mechanism to
receive resources. Thus, we introduced FSM, which manages the resources per identity
and allows instances of FMX to “fetch” resources when necessary.

Now, at first, one would like to fetch only so much resources as necessary. But FMX
has no way of signaling FSM how much resources are necessary: Even a message that
only contains the length of the payload has a length that depends on the payload itself.
So, FSM always sends all available resources to FMX.

This could be avoided by integrating !FMX | FSM into a single IITM or, as in [KSW09b,
KSW09c], by splitting client and server in the ideal world, but the first approach reduces
the intended modularity of the functionality and the second approach adds complexity
to the message transfer itself.

4.6.3.2. Addressing

Addressing (instances of) IITM’s is not a trivial task either: Multiple instances of a
single IITM functionalityM0 may run in parallel (using the bang operator), and while
the CheckAddress mode of the IITM framework mostly allows to clearly define which
instance accepts which message, a general problem in simulation-based frameworks
still occurs:

Suppose that multiple (instances of) IITM’sM1,M2, . . . want to access one of multi-
ple instances ofM0 that run in parallel. Then they have to use some identifying string
like a session id to address a single instance, for example, PC and PS both access a
single instance of FSIG using identifiers like (s, (S, c, r)). For the realizations in this the-

sis, agreeing on a globally unique session identifier is easy to realize, as the client can
simply chose the nonce r at random and include it in the message to the server.

For a message exchange functionality like FMX, the situation is different: As shown
above, FMX has to obtain resources from the environment on the server side before
delivering a request message to the environment. Now if we assume that we leave out
FSM and if the client would like to send a message and the server would like to open
a “buffer” for exactly that incoming message, both parties would have to agree on a
session id before an instance of FMX could transfer messages between both parties.

But how can one agree on a session id before the protocol is run? In [Can00, Section
3.4.2], Canetti states in a paragraph “on determining the session identifiers”:

There are multiple ways for such agreement to take place. A first method
[. . . ] is to determine the SID of the instance in advance [. . . ] A second alter-
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native is to design the protocol in such a way that the agreement on the SID
is done by the protocol instance itself. [. . . ] A third alternative [. . . ] is to run
some simple agreement protocol among the parties [. . . ]

The first and the third approach would require communication before starting the
protocol, while the second approach is roughly what we use in our functionalities16,
but this has the drawback that, as discussed in Section 4.6.3.1, it only works with a
long-lived functionality like FSM or PS which spans multiple sessions.

4.6.3.3. Corruption

Corruption refers to the adversary’s ability to selectively take over (parts of) function-
alities, which intends to model situations where, e. g., parties of a protocol (partially)
cooperate with the adversary or where a party mistakenly trusts the adversary.

Usually, if an instance of a functionality is corrupted, nothing is guaranteed for the
security of (a part of) that instance; but the security guarantees for other instances may
still hold (precisely defining this is a part of the ideal functionality).

We stress that it is important to enable the environment to always check if a function-
ality is corrupted or not (as mentioned in [KT08a]), otherwise writing a simulator and
thus proving a realization secure is a trivial task: If we would have left out step (4.6.5)
and similar steps, a simulator could corrupt each instance of FMX and deliver arbitrary
payloads; thus, an insecure protocol could be proven secure.

We also stress that, when using ideal functionalities (like we used FSIG etc.), one
has to closely examine the corruption functionalities of those ideal functionalities: As
the abilities of an adversary to corrupt such a functionality are modeled after realistic
assumptions (like the adversary obtaining the private key of a party), one has to accept
that such a functionality may get corrupted—if, in contrast, one stops cooperating with
such a functionality (like we did in [KSW09b, KSW09c], see Section 4.6.5), one only
proves the protocol secure for the case that no corruption occurs; thus, one has no
guarantees for the case that, e. g., a single key is corrupted.

Some functionalities need additional resources when corrupted, this is reflected by
the corruption macro introduced in [KT08b] (also see Section 5.1.1, where we use that
macro in an ideal functionality): Here, a corrupted functionality needs to be provided
with resources to allow the adversary to send messages through that functionality.

But this simple mechanism for distributing resources poses a problem if multiple
corrupted functionalities are involved: Assume for example that a functionality P uses
multiple instances of the signature functionality FSIG. Now if the environment sends
resources for corruption to P , these resources have to be distributed to all the corrupted
ideal functionalities, but in each case, the adversary would have to be notified of the
resources that have been sent. But the adversary cannot be forced to give back control

16In FS2ME, the functionality FMX chooses SID’s for the server and the adversary; in PS2ME, the client
chooses a nonce which then identifies the session.
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after it has been notified that the first of the corrupted functionalities received its re-
sources, so we may have to, e. g., force it to give back control or reduce the number of
notifications (which may result in decreased modularity).

4.6.4. Joint State Realizations

The IITM framework features a simple and natural mechanism for IITM’s with joint
state, see [KT08a].

But the joint state realization from [KT08a] that we used in Section 4.5 to implement
FSIG has the drawback that it adds unnatural prefixes to messages: In a joint state
implementation, a single instance of a real signature scheme is used to realize a multi-
session version of FSIG by adding the session id to the message before signing, i. e., if
a message m is signed in a session identified by sid, the term (sid, m) is passed to the
signature algorithm; this is usually unrealistic.

Note that in [GMP+08], where the security protocol TLS [DA06] is analyzed, the joint-
state theorem for the Universal Composition framework is used without taking into
account that the resulting implementation would prefix messages before encrypting
them; thus the authors proved secure a variant of TLS that is not used in applications.

In our case, this modeling even reduces the abilities of the adversary in comparison
with Chapter 3: The adversary does not have the ability to pass arbitrary bit strings
(that do not look like messages) to the signature scheme, as the signature scheme only
receives bit strings that have the structure (sid, m) with sid, m ∈ {0, 1}∗.

For our protocols, these prefixes are also unnecessary as they only contain data that
is already extractable from our messages (sender, receiver and message id, which are
included in the header of our messages). Thus, we could have used just one instance of
the signature scheme per identity (i. e., !FSIG instead of !FSIG). We sketch the modifica-

tions to our functionalities and the proof.
The functionalities PC and PS (as well as PSI and F

KSsig) would have to drop the
second prefix, e. g., they would communicate with the signature functionality by using
prefixes (c, . . . and (s, . . . instead of (c, (C, s, r), . . . etc.

The simulators would have to be modified accordingly, but one would also have to
change the handling of corruption: If a signature functionality is corrupted, all sessions
that use the corrupted signature functionality would have to be corrupted, and as soon
as a new session is started, one would have to check if one has to corrupt that session.

In our proof, for step (B.22) we used the fact that the signature functionality signed
only one request message; this could simply be modified to state that the signature
functionality signed only one request message containing these values for sender, re-
ceiver and message id in its header (with overwhelming probability). Analogous mod-
ifications would have to be made to the proof for step (B.38) and the corresponding
steps for CSA and PA.

While these modifications would be possible, it seems more natural from a modeling
perspective to use different instances of the signature functionalities for different ses-
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sions. To preserve this modeling, one could use an alternative approach: As the session
id can be computed from a message in our work, we can partition the message space.

We sketch a joint state realization P JS∗
SIG such that, roughly, P JS∗

SIG | FSIG realizes !FSIG.

Our realization P JS∗
SIG would be parameterized by an efficiently computable function

f : {0, 1}∗ → {0, 1}∗ that partitions the message space, i. e., on input of a message,
f returns the session id of a session to which that message seems to belong, or ε if
no session could be identified. Now whenever P JS∗

SIG receives a message containing a
session id sid and the request to sign or verify a message m, the functionality checks
whether f (m) equals sid. If both are equal, the request is forwarded to the one instance
of FSIG used by P JS∗

SIG; otherwise, the request is simply answered by returning ⊥ as the
signature or the verification bit.

To show that P JS∗
SIG | FSIG securely realizes !FSIG, we use a simulator that is similar

to S JS
SIG in [KT08b], which asks the adversary once to provide algorithms s and v and

then uses variants ssid, vsid each time an instance of FSIG with session id sid asks for it.
The main modification here is that ssid and vsid would be defined to first run f on the
message and then return ⊥ if f (m) 6= sid, and otherwise execute s or v.

Using this realization, we could realize !FSIG in such a way that only one instance

of FSIG is used per party, but our ideal modeling could be preserved. Our partitioning
function f would simply check if the message has the structure of a request or response
message, and return ε if not. Otherwise, f extracts and returns the appropriate triple,
e. g., (C, s, r).

Note that while our functionalities PC and PS would respect our partitioning func-
tion f when signing, i. e., direct requests for signing to the “correct” instance of the sig-
nature functionality, the signature interface PSI only allows the adversary to sign any
message that has not the structure of a request or response. Thus, the adversary sim-
ply has to use the instance of PSI identified by session id ε for access to the signature
scheme, but (contrary to the current joint-state realization, see above) this allows the
adversary to pass arbitrary bit strings (that do not look like messages) to the signature
scheme.

4.6.5. Comparison with Pre-Published Results

Parts of the results in this chapter were previously published in [KSW09b, KSW09c].
But even for these parts, there were some differences, which we point out below.

In [KSW09b, KSW09c], we only analyzed a different modeling of SA2ME-1 (called
2AMEX-1 as noted in Section 2.5.1), but neither CSA2ME-1 nor PA2ME-1. The latter
protocols have neither been formally defined nor analyzed before in published work.
Hence, the ideal functionality in [KSW09b,KSW09c] differs in that it is rewritten in this
work to be compatible not only with SA2ME-1, but also with CSA2ME-1 and PA2ME-1.

The functionalities for SA2ME-1 in this thesis differ from those in [KSW09b,KSW09c]
for 2AMEX-1 in other aspects:
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In this thesis, the modeling of corruption is far more detailed:
In [KSW09b, KSW09c], we only used a pre-defined corruption macro from [KT08a,

KT08b], but we did not model that the environment could pass resources to corrupted
signature schemes, and once a signature scheme was corrupted, we essentially stopped
working with that signature scheme. This essentially disables the adversaries ability to
corrupt the signature schemes.

In this thesis, we correct that flaw by allowing the adversary to corrupt signature
and verification functionalities (as well as encryption functionalities) and also allowing
the environment to pass resources to the signature functionalities, which the adversary
needs to properly use the corrupted schemes. In addition, we cooperate with signature
or encryption schemes even if they are corrupted, but include that information in the
answer to the environment’s question for a functionality’s corruption status.

In [KSW09b, KSW09c], we modeled the ideal functionality in such a way that client
and sever sides were separated. While this would also be possible in our current mod-
eling, we feel that the modeling in this thesis is more natural, as the message transfer
is handled by a single instance of FMX, holding all values and state information of one
run of the protocol.

This also allows for a more natural modeling of the expiration of sessions on the
server side: While in [KSW09b, KSW09c] the adversary was able to provoke error mes-
sages at any time (even for non-expired sessions), it now only has the ability to irrevo-
cably expire a session, and FMX then consistently handles the error messages.

On the server side, we now use a session id sids that is chosen by the server in-
dependent of the nonce r used in the protocol messages. In contrast, the modeling
in [KSW09b,KSW09c] has the following disadvantage: Suppose a message m contained
some message id r, and suppose that m was sent by the client, but not yet received by
the server. Now the adversary could read r and pass it on to the environment, which
could then try to respond to a message before the server even received that message.

A similar modification that simplifies the modeling is that on the client side, the en-
vironment now chooses its own session id (sidc), whereas in [KSW09b, KSW09c], the
generated nonce r was used by the environment to distinguish sessions on the client
side, what made additional protocol steps necessary.

In summary, while the general result for SA2ME-1 is the same in both in [KSW09b,
KSW09c] and in this thesis, the modeling of the ideal functionality is more realistic,
precise, and flexible in this thesis.





5. Relation between the Two Frameworks

In this chapter we study the relation between the Bellare–Rogaway framework and the
IITM framework.

First, in Section 5.1, we show that for a simpler case of protocols (mutual authen-
tication protocols), there is a strong connection between both frameworks: We define
a lightweight wrapper that turns any mutual authentication protocol that is secure as
defined in [BR93a] (and has only polynomially many rounds) into a system of IITM’s
that implements a standard ideal functionality for authentication in simulation-based
frameworks.

For the case of secure two-round message exchange, we then make some remarks
about the relation between both models in Section 5.2.

5.1. Mutual Authentication

In this section we show that a mutual authentication protocol (with polynomially many
rounds) secure in the Bellare–Rogaway framework implements ideal mutual authenti-
cation. To this end we describe two variants of an ideal functionality for mutual authen-
tication in the IITM framework, a single-session and a multi-session version, and give
realizations of both ideal functionalities by using any protocol secure in the Bellare–
Rogaway framework.

The single-session variant of the ideal functionality is the direct adaptation of the
functionality defined in [CH06] for mutual authentication, which is intended to model
the simplest possible case of authentication. The multi-session variant is a more prac-
tical modeling, see our remarks below. Since both variants are similar, we concentrate
on the more complex multi-session variant later on.

In Section 5.1.4 we later show that the opposite direction does not hold, i. e., a pro-
tocol secure in the IITM framework does not naturally yield a protocol secure in the
Bellare–Rogaway framework. In addition, as explained in Section 4.6.2, it is hard to cap-
ture the correctness definition of the Bellare–Rogaway framework in the IITM frame-
work.

5.1.1. Ideal Functionalities

The first variant of the ideal functionality of mutual authentication,FSS
MA, defined in Ap-

pendix C.1.1, is a direct adaption of the authentication functionality F2MA from [CH06]
to the IITM framework: To initiate authentication, a party sends its own identity as
well as the identity of the intended communication partner to the ideal functionality. If
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the ideal functionality receives two matching tuples (i, j) and (j, i) and as soon as the
adversary allows it, the functionality informs the two parties of the successful authen-
tication.

We also want to cover the multi-session case, where the same pair of partners can
perform multiple runs of the protocol in parallel. The single-session variant FSS

MA could
be extended to a multi-session version FSS

MA using the standard mechanism for multi-
session extensions in the IITM framework (denoted by underlining the functionality,
see Section 4.1.2). However, both the multi-session version FSS

MA and the functional-
ity F2MA from [CH06] have the drawback that both communication partners have to
agree on a session id before using the functionalities, which seems unnatural, see Sec-
tion 4.6.3.2.

Therefore, we define a second variant of the ideal functionality,FMS
MA, see Figure C.1.2,

which directly allows the users to initiate multiple sessions between the same commu-
nication partners: Each user employs local session id’s to distinguish different sessions
between the same communication partners, the session id’s of both partners do not
have to match. This is realistic and more closely represents the situation in the Bellare–
Rogaway framework: The question which sessions exchange messages depends on the
delivery of these messages by the network. To model this, in our ideal functionality
FMS

MA, the adversary decides which session id’s are partnered up, e. g., the adversary
may connect a session of party i that wants to connect to party j and has a local session
id s to a session running for party j that wants to connect to party i and has local session
id t 6= s.

Note that while variant SS is a direct adaption of [CH06], the latter variant MS cor-
responds to the definition of protocols in [BR93a], where protocols are required to be
secure even if the protocol itself does neither know if there are parallel sessions of the
same protocol, nor is it provided with a (local) session id. We show that both variants
are implemented by protocols that are secure in the Bellare–Rogaway framework.

Our functionalities use the parameterized corruption macro Corr (see Appendix C.4)
that adds a couple of steps which take precedence over the steps we defined above.
The corruption macro is a simple adaption of the one defined in [KT08b], we added
parameters for working with message prefixes.

5.1.2. Implementing Mutual Authentication

In the following, we fix a secure mutual authentication protocol Π and a long-lived key
generator G, both as defined in Section 3.1.

For this work, we restrict ourselves to protocols with polynomially many rounds, i. e.,
there is a polynomial p such that when Π is run with security parameter η, then each
session Πs

i,j sends at most p(η) outgoing messages. Further, without loss of generality,
because both Π and G have polynomial running time in η, we can assume that there is
a polynomial q such that both algorithms only use the first q(η) bits of their random bit
string.
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Figure 5.1.: Ideal world (left) and realization (right) for mutual authentication

To adapt the protocol to the IITM framework, for any v ∈ {SS, MS}, we define a
system of IITM’s Pv

MA = !Pv
Π | Pv

G which securely implements !F v
MA, as illustrated in

Figure 5.1.
The IITM’s PMS

Π and PMS
G are defined in Appendices C.2.2 and C.2.4, respectively;

the functionalities for the simpler case of variant SS can be found in Appendices C.2.1
and C.2.3. In the following, we only describe variant MS.

The IITM PMS
G is a simple wrapper around G. During initialization, it chooses a

random bit string r from {0, 1}q(η), where—as explained above—we assume that q(η)
is a polynomial that, for any security parameter η, gives the maximal number of bits
that G or Π use of their random bit string. When the IITM is called with an identity a,
it responds with the output of G(1η , a, rG). It also allows the adversary to retrieve the
value of G(1η ,A, rG) (see Section 3.1).

When the machine PMS
Π is first called with identities i and j and a session id s, it ran-

domly chooses r from {0, 1}q(η) and retrieves the private information of i from PMS
G .

Then, for every incoming message, PMS
Π directly calls the algorithm Π with the incom-

ing message min and additional information (security parameter 1η , identities i and j,
private information a, message trace κ, and random bit string r) and relays the response
mout to the network together with the decision δ. If the algorithm Π accepts (i. e., δ = A),
the IITM allows the adversary to initiate notification of the environment about success-
ful authentication.

As explained in Section 4.1.1, the accumulated length of messages that machines may
print out during the entire protocol run is restricted polynomially in the security param-
eter and input received on enriching tapes. The machines in our protocol satisfy this
requirement: For the key generator this is obvious as each of its outputs is triggered by
an input on an enriching tape. The protocol machines Pv

Π also satisfy this condition:
The entire output of Pv

Π is polynomial since 1. each protocol has only a polynomial
number of rounds, 2. the messages produced by Π are bounded because the runtime of
Π is polynomial in η, 3. the output message to the environment is only sent once, and
4. only one message is sent to PMS

G .
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5.1.3. Bellare–Rogaway Security Implies Secure Realization

Theorem 5.1. Let Π be a secure and correct mutual authentication protocol with polynomially
many rounds, and let G be a long-lived key generator, both as defined in [BR93a]. Then for both
v = SS and v = MS we have

!Pv
Π | Pv

G ≤BB !F v
MA . (5.1)

Proof of Theorem 5.1. We only prove the more involved case v = MS, the simpler case
v = SS follows easily with a simplified proof.

We show that when we use the simulator SMS
MA presented in Appendix C.3, it fol-

lows that for any environment E and adversary A, with overwhelming probability the
systems

MF = E | A | !FMS
MA | SMS

MA and MP = E | A | !PMS
Π | PMS

G (5.2)

result in the same output. More precisely, we show that for every possible sequence
of random bits used by 1. the adversary, 2. the environment, 3. the (simulated or real)
LL-key generator, and 4. the (simulated or real) protocol algorithms, the parts of the
real and ideal systems that are visible to E or A behave identically with overwhelming
probability. This implies that with overwhelming probability, the environment and the
adversary produce the same output when interacting with the real and the ideal system,
as required.

Hence let E and A be an arbitrary polynomial-time environment and adversary for
our functionalities, respectively. In order to prove the result, we establish a relation R
between states of the two systems, and show that if both systems use the same random-
ness as explained above, then the following holds with overwhelming probability: If q1
is a state ofMF , and q2 is a state ofMP such that (q1, q2) ∈ R, then

1. the messages sent and received by E and A are identical in q1 and q2,

2. for every message m that E orA can send to the system, if q′1 is the follow-up state
ofMF and q′2 is the follow-up state ofMP , then (q′1, q′2) ∈ R.

Hence inductively for every sequence of actions that the coalition of E and A per-
forms, the reactions they observe from the systems are identical as claimed above. The
relation R essentially establishes a bisimulation (see [Par81]) between the two systems.
We now make this more precise.

Definition of the relation R. In the following, with a state of either MP or MF we
mean the configurations of all involved machines at either (a) the beginning of the pro-
tocol run, or (b) a time when E orA is activated, where a machine which is neither E or
A was active before.

For states q1 ofMF and q2 ofMP as above, let (q1, q2) ∈ R if and only if

• the communication history between E andA and the remaining machines is iden-
tical in q1 and q2, and
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• the same machine is active in q1 and q2 (this must be either E or A, note that E is
active when a protocol run is started).

Proof of required properties. We show that R has the properties as mentioned above.
The first property directly follows from the definition of R. It remains to show the
second property, i. e., if (q1, q2) ∈ R, and the same message is sent to the system by E or
A, then the resulting states are again R-related. First observe that from the definition of
R, the following properties hold:

• A machine PMS
Π for the session (i, j, s) is running in the state q2 ofMP if and only

if a machine with the same parameters is being simulated in q1 of MF by the
simulator. (This is true since when (q1, q2) ∈ R, then in particular the environment
did send the exact same activation commands of the form (i, j, s) in q1 and q2.)

• If a machine with parameters (i, j, s) as above is running, the following two prop-
erties hold:

– κs
i,j in the real state q2 is the same as the value of the corresponding simulated

trace in the ideal state q1. (This is true since these traces contain exactly the
messages as received by and sent to the adversary, these are identical in q1
and q2 by definition of R.)

– The same is true for the real and simulated values of δ, and for values ob-
tained from (real or simulated) G. (Recall that we assume that the same ran-
domness is used in both the real and the ideal system.)

The following lemma shows that the security definition in the Bellare–Rogaway
framework is exactly what we need to ensure that only “allowed” authentications hap-
pen in the (real or simulated) execution of Π; it follows directly from their definition
and results.

Lemma 5.2. In the case that connect(i, j, s) is called by the simulator, then with overwhelming
probability there is a unique session id t such that κt

j,i is a matching conversation for κs
i,j.

Proof of Lemma 5.2. Assume that the session t does not exist or is not unique with non-
negligible probability. Since the simulator SMS

MA exactly simulates the experiment de-
fined in [BR93a], it follows that E , SMS

MA, and A then form an adversary that achieves
one of the events No-Matching (if t does not exist) or Multiple-Match (if t is not unique)
as defined in [BR93a] with non-negligible probability. This is a contradiction to the as-
sumption that Π is secure by the definition of security (for No-Matching) or by [BR93a,
Proposition 4.3] (for Multiple-Match).

In order to finish the proof, we now consider every possible message that E or A can
send to the protocol. Note that (except for corruption messages), there are only three
different types of message from E or A that are accepted by the protocol machines.
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(C.11)/(C.4) In this step, E sends (i, j, s) to PMS
Π or FMS

MA.

In both systems, only internal operations are performed, and no message is sent
to the adversary or the environment. The environment is activated next. Hence
the follow-up states are again R-related.

(C.12)/(C.19) In this step, A sends (i, j, s, min) to PMS
Π or SMS

MA.

If the (real or simulated) state of the protocol machine running with session (i, j, s)
is 0, or the machine is not started, the message is ignored and the environment
is activated again in both cases. In particular, the follow-up states are again R-
related. Hence assume that this is not the case, then the state is greater than 0.

In both the real and the ideal system, the adversary is activated next, and ob-
tains the message (i, j, s, mout, δ′), where (mout, δ′, α′) = Π(1η , i, j, a, κ, r), and κ is
the (real or simulated) trace of the session (i, j, s) (note that these are identical in
q1 and q2, since (q1, q2) ∈ R), a is the secret information obtained from (real or
simulated) G (and thus is identical as well in both systems, as G uses the same
randomness by assumption), and r is the randomization used by the protocol ses-
sion (i, j, s) (which again is identical in both systems). Thus the output to the
adversary is identical, and the resulting follow-up states are R-related again.

(C.13)/(C.20) In this step, A sends (i, j, s) to PMS
Π or SMS

MA.

If δ[i, j, s] = false or n[i, j, s] = true in q1, which corresponds to state 6= 2 in q2,
then nothing happens. Hence assume that δ[i, j, s] = true and n[i, j, s] = false in
q1, and state = 2 in q2.

In the real system, the reaction to the incoming message (i, j, s) is the delivery of
the message (i, j, s) to the environment, which is then activated. We show that the
same message is delivered to E in the ideal system:

Since δ[i, j, s] = true, we know by construction of the simulator that earlier in
the protocol run, connect(i, j, s) has been called. Due to Lemma 5.2, with over-
whelming probability this call determined a unique t with a matching conversa-
tion. In particular, a session (j, i, t) was started earlier (as by definition of protocols
in [BR93a], protocols have at least three rounds).

In the step where connect(i, j, s) was first performed, the message (i, j, s, t) was
sent to FMS

MA. Hence the following messages were exchanged:

1. SMS
MA → FMS

MA : (i, j, s, t)

2. FMS
MA → FMS

MA : (j, i, t, s)

3. FMS
MA → FMS

MA : (i, j, s)

4. FMS
MA → SMS

MA : (i, j, s, t)

(5.3)

and both sessions (i, j, s) and (j, s, t) have state = 2. Hence when A sends (i, j, s)
to the simulator, and δ[i, j, s] = true as assumed above, we know that the ideal
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machine running for (i, j, s) is in state 2. Upon receiving (i, j, s), the simulator for-
wards this message to the running ideal functionality, which forwards this tuple
to the environment as required. Hence the follow-up states are R-related with
overwhelming probability.

Corruption messages. It remains to show that the above remains true when the adver-
sary A sends a corruption request to a (real or simulated) protocol machine.

By construction, the real system and the ideal one behave identically in this case:
As soon as a machine in the real world is corrupted, it stops operating (except
allowing the adversary to send and receive messages on the corresponding tapes).
In the same way, as soon as the simulator receives a corruption request, it stops
simulating the corresponding machine and only allows the adversary to use the
tapes of the (ideal) functionality.

The only tape the adversary is given access to using the corruption mechanism
is the tape shared by the protocol and the environment, hence sending messages
on these tapes essentially corresponds to internal operations of the coalition of
adversary and environment, in particular performing such an action in states q1
or q2 where (q1, q2) ∈ R leads to follow-up states that are again R-related.

5.1.4. Secure Realizations do not Yield Secure Bellare–Rogaway Protocols

We have just shown that any mutual authentication protocol that is secure in the
Bellare–Rogaway framework realizes a standard ideal functionality for mutual authen-
tication. We note that the opposite direction does not hold directly:

Assume that a system of IITM’s PMA securely realizes one of the ideal functionalities
defined above. Then we can define a system of IITM’s P∗MA that is a copy of PMA with
the following difference: 1. Before an IITM sends a message to the adversary, it appends
the bit 0 to that message. 2. Any incoming message from the adversary is accepted only
if the last bit is 1, but that bit is removed before processing the message. Thus, P∗MA
requires the adversary to flip each bit if it delivers a message from one IITM to another.

Obviously, the system P∗MA securely realizes the ideal functionality if and only if PMA
securely realizes the same functionality. But this protocol cannot be secure (without
modifications) in the Bellare–Rogaway framework as it explicitly needs non-matching
conversations.

5.1.5. Extension to Authenticated Key Exchange

We note that while we focused on mutual authentication, the proof can be extended to
authenticated key exchange:
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Bellare and Rogaway model authenticated key exchange in [BR93a]17, and the key
exchange functionality F2KE from [CH06] is a simple extension of the functionality F2MA
from [CH06] referred to above.

In this way, our functionalities can be extended to the case of authenticated key ex-
change by including a key in certain messages. The proof carries over, with the differ-
ence that the keys distributed by the functionalities are not equal, but indistinguishable.

A similar connection has been shown by Shoup [Sho99]: Protocols for authenticated
key exchange secure in the sense of Bellare–Rogaway (in Shoup’s corrected version)
are secure in a model defined by Shoup based on [BCK98]. The latter is in some way
simulation-based, but less generic than the IITM framework or similar models:

Shoup defines a simulation-based security notion specifically for authenticated key
exchange. An adversary A is allowed to play against a protocol in the real world while
a transcript records certain parts of the adversary’s actions. Now a protocol is secure
if for each efficient adversary A that plays in the real-world there is another efficient
adversary A∗ that can play against an idealized authenticated key exchange protocol
such that the transcript of the actions of A∗ is computationally indistinguishable from
the transcript produced by A.

5.2. Secure Two-Round Message Exchange

In the previous section, we discussed a connection between the two frameworks used
in this thesis for the case of mutual authentication. In this section we comment on the
connection for the case of secure two-round message exchange.

As pointed out in Section 4.6.2, there seems to be no reasonable way to transfer the
correctness definition from Chapter 3 to the IITM framework. Similarly, there seems to
be no manageable way in the IITM framework to do a concrete analysis similar to the
one we did in Chapter 3 as the IITM framework adds a lot of abstractions and features
to the model.

5.2.1. Problems When Relating Both Models

While a connection exists for the case of mutual authentication, the situation is, unfor-
tunately, far more complicated for secure two-round message exchange. We address
some aspects that make it at least technically very tedious (and impossible without
modifications to the model in Chapter 3) to show a similar connection for the case of
secure two-round message exchange.

First, the cryptographic primitives used in our model for secure two-round message
exchange in Chapter 3 are more complicated than in the basic case of mutual authenti-
cation in [BR93a]:

17As noted earlier, Shoup [Sho99] corrects a serious flaw in [BR93a], this has to be incorporated to prove
the connection between both frameworks for the case of authenticated key exchange.
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Bellare and Rogaway used only a long-lived key generator, which has a very sim-
ple interface (compute a bit string containing any party’s private information upon
request), but they left the rest to the protocol (i. e., if a protocol wants to use digital
signatures, it has to implement this using only the information available through the
long-lived key generator).

In contrast, our model in Chapter 3 explicitly provided a digital signature scheme;
not only because this is what we used for our protocol, but also because we need to
explicitly include it in the model if we want to give the adversary (partial) access to
it. But if one compares the simple modeling we used in Chapter 3 (giving each party
access to its private key as well as all public keys, and providing a signature oracle
to the adversary) to the far more complex infrastructure used in Chapter 4 (FSIG, PSI,
F

KSsig in PS2ME and FEI in FS2ME), it is clear that one would at least have to make major
modifications to the modeling in Chapter 3:

For example, client and server algorithms could include information derived from
their signature keys in the messages, and upon certain assumptions (e. g., if the infor-
mation is hashed and certain assumptions can be made about the hash function), such
a protocol might still be considered secure; the adversary can even check if this infor-
mation is correct if it corrupts a party. While such a protocol might be secure in the
Bellare–Rogaway framework, it can certainly not be transferred directly to the IITM
framework.

In the IITM framework, modeling corruption is a non-trivial task, especially if multi-
ple functionalities are involved—we discussed this in Section 4.6.3.3. Thus, it is unclear
if the simple corruption mechanism of Chapter 3 (providing the adversary with the sig-
nature key) is adequate if one wants to (automatically) transfer secure protocols to the
IITM framework where, for example, the corruption status of an IITM instance possibly
relies on the corruption status of multiple other IITM instances, and where resources
may have to be shared in a non-trivial way, see comments in Section 4.6.3.3.

Similar, the addressing mechanism used in our realization PSA
S2ME is not trivial, see

Section 4.6.3.2, and any implementation of FS2ME has to implement the same mecha-
nism at least for the interface to the environment.

More importantly, the resource restrictions in the IITM framework are non-trivial.
As discussed in Section 4.6.3.1, this has an influence on the design of IITM’s, and it is
important to keep those in mind not only before, e. g., accepting an incoming message
as valid, but even before processing it (e. g., by sending it to a verification functionality).

5.2.2. Matching Conversations

In Chapter 3, our adaption of the notion of “matching conversations” from [BR93a] is
not as strong as the original definition in the sense that we introduced a notion of equiv-
alence and allowed the adversary to replace a message with an equivalent one before
delivery. This could be important for the connection between the two frameworks:

For example, consider a protocol that 1. is a secure realization of the ideal two-round
message exchange functionality in the IITM framework, 2. allows intermediary stations
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on the network to append data to the messages sent over the network, but 3. discards
these appended parts before the message is processed.

Then, the definition of matching conversations from [BR93a] would not allow to
prove this protocol secure in the Bellare–Rogaway framework as each protocol session
that leads both parties to accept has to have matching conversations (with overwhelm-
ing probability). But our relaxed notion of equivalent messages would allow this kind
of “appended data” as long as the behavior of the receiving algorithm does not depend
on it.

Note that while the above protocol is an artificial example, there exist situa-
tions where messages are altered during transfer, for example, the header informa-
tion inserted into e-mails by relaying servers or the processing at SOAP intermedi-
aries [NGM+07].



6. Conclusion

In this thesis we analyzed ways to secure two-round message exchange protocols. We
defined three protocols that have not been specified in detail before (but variants of
which are widely used in practice). Using two different approaches, we proved the se-
curity of those protocols, taking into account common protocol elements such as times-
tamps and nonces, but also specifics of the setting of web services such as signed parts
or different roles of servers and clients.

Although protocols like these are reckoned secure in practical applications, this work
is the first that allows sound cryptographic security proofs of protocols in the two-
round setting, faithfully including characteristical aspects of two-round protocols. Nev-
ertheless, we still abstracted from many implementational details (see [BG05] for an
overview of some examples), and we used the random oracle model for the analysis of
our password-based protocol.

We first discussed specifics of the two-round setting as well as notions of authentica-
tion and put “message exchange authentication” in the context of message and entity
authentication. Although the notion of message exchange authentication fits naturally
in this context, to the best of our knowledge, it has not been studied before.

Then, we tailored the Bellare–Rogaway framework to model important specifics of
the two-round protocol setting we wanted to analyze. The resulting security definition
is self-contained in that understanding it does not require previous knowledge of any
framework. We were then able to perform a concrete trace-based security analysis.

However, analyzing all three of our protocols in this style would have led to three
different models (or a significantly more complex integrated model) for the three dif-
ferent security goals. In addition, the modeling of matching conversations is too strict
in some situations (we already had to relax it using the notion of equivalent messages).

Simulation-based security clearly has the advantage that it leads to an easier state-
ment of different security goals than an individual, trace-based definition, given that
the reader is familiar with simulation-based security and the complex details of the
IITM framework to understand all communication steps.

Moreover, the simulation-based approach allowed us to treat protocols for different
tasks in a single model, as partially demonstrated by our parameterized ideal function-
ality. The security properties obtained by such an analysis are quite strong and hold
(via composition) in an arbitrary context. The IITM framework (and related frame-
works) is designed to support modular protocol analysis, which we were able to utilize
for digital signatures and encryption.

However, those advantages come with a price when considering a concrete complex
protocol. The formulation of both ideal functionalities and concrete implementations
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in Chapter 4 is rather long and partly unintuitive (the latter are significantly more com-
plex than their counterparts in Chapter 3). Both feature unnatural communication (bit
strings to provide computing resources, status and activation messages sent to and
received from the adversary and the environment), which are necessary due to how re-
sources and activation are handled. Intuitively, one would like the environment to only
access the “service” provided by the functionalities, but in the IITM framework, the
environment needs to play additional roles (providing resources, checking corruption).
In addition, the use of the joint-state theorem to enable realistic treatment of signatures
results in a slightly different protocol from the one originally stated in Chapter 2 and
from a realistic implementation.

When analyzing complex protocols like the ones in this thesis, tool support for the
IITM framework would be highly desirable. While a fully automated analysis of the
security of IITM’s is not possible (as undecidability results exist for models that allow
far less complexity), a partial analysis (for example, checking for matching tapes and
“interfaces” of machines) would help designing ideal functionalities and realizations.
Nevertheless, writing down functionalities (or even a simulator) is not a full proof, and
a lot of subtleties only become clear when writing up proofs like in Chapter 4 or 5. But
it may be possible to automate parts of the proofs using an automated theorem prover.

In our work we also discussed the relationship between a computational and a
simulation-based security notion. For simple protocols, showing connections is fea-
sible, but for more complex situations like the one in this thesis the potential results
gained do not seem to justify solving all the technicalities involved.
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A. The Simulator for the Trace-Based Analysis

We now define the simulator S for the trace-based analysis in Chapter 3.
The addition on time values, i. e. on ltime bit numbers, is denoted by +̇. We assume

the simulator is provided with a public key pksig
? and a signature oracle Ω? which it is

supposed to attack, it has access to the capacities and tolerances of the servers (i. e., to
caps and tol+s for each s ∈ IDs), the signature scheme (G, S, V), and the encoding and
decoding functions (E, D).

main

1 let u = 0
2 let U = newMap()
3 let M = newMap()
4 let A choose a set A ⊆ IDs with |A| = nID
5 choose x ≤ nID at random
6 for a ∈ A
7 let ā = userNr(a)
8 let tā = 0
9 if ā = x,
10 let pksig

x = pksig
?

11 else,
12 let (pksig

ā , sksig
ā ) = G()

13 send (a, pksig
ā ) to the adversary

14 simulate A
15 if A sends Time(a, t)
16 return time(a, t)
17 if A sends Send(p) to Cc, si
18 return clientSend(c, s, i, p)
19 if A sends Receive(m) to Ss
20 return serverReceive(s, m)
21 if A sends Send(p, h) to Ss
22 return serverSend(s, p, h)
23 if A sends Receive(m) to Cc, si
24 return clientReceive(c, s, i, m)
25 if A sends Corrupt(a) to Ω
26 return corrupt(a)
27 if A sends Sign(a, p) to Ω
28 if D(request, p) or D(response, p) is successful
29 return ε
30 return sign(a, p)
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userNr(a)
31 let ā = lookup(U, a)
32 if ā = ε
33 let ā = u
34 let u = u + 1
35 add(U, a, ā)
36 return ā

time(a, t)
37 let ā = userNr(a)
38 if t ≥ tā, set tā = t
39 return tā

clientSend(c, s, i, p)
40 let c̄ = userNr(c) and s̄ = userNr(s)
41 if µi

c̄,s̄ 6= ε
42 return (ε, 0)
43 let r be a random lnonce-bit number
44 let µi

c̄,s̄ = r
45 let m = E(request, c, s, r, tc̄, p)
46 let σ = sign(c, m)
47 let m̂ = E(signature, m, σ)
48 return (m̂, 1)

serverReceive(s, m̂)

49 let s̄ = userNr(s)
50 if µtmin

s̄ = ε

51 let µtmin
s̄ = ts̄ +̇ tol+s and µL

s̄ = newMap()
52 try
53 let (m, σ) = D(signature, m̂)
54 let (c, s′, r, t, p) = D(request, m)
55 if any error occurred while decoding
56 or s′ 6= s or verify(c, m, σ) = 0
57 or t ≤ µtmin

s̄ or t > ts̄ +̇ tol+s or lookup(µL
s̄ , r) 6= ε

58 return (ε, 0, ε, ε)
59 if size(µL

s̄ ) ≥ caps
60 let µtmin

s̄ = ts̄ +̇ tol+s
61 for v in allValues(µL

s̄ )
62 let (t′, a) = D(tuple, v)
63 if t′ < µtmin

s̄ , let µtmin
s̄ = t′

64 for v in allValues(µL
s̄ )

65 let (t′, a) = D(tuple, v)
66 if t′ ≤ µtmin

s̄ , remove(µL
s̄ , v)

67 add(µL
s̄ , r, E(tuple, t, c))

68 return (p, 1, c, r)
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serverSend(s, p, h)
69 let s̄ = userNr(s)
70 if µtmin

s̄ = ε

71 let µtmin
s̄ = ts̄ +̇ tol+s and µL

s̄ = newMap()
72 let v = lookup(µL

s̄ , h)
73 if v = ε, return (ε, 0, ε, ε, µs̄)
74 let (t, c) = D(tuple, v)
75 if c = ε, return (ε, 0, ε, ε, µs̄)
76 remove(µL

s̄ , h)
77 add(µL

s̄ , h, E(tuple, t, ε))
78 let m = E(response, s, c, r, p)
79 let σ = sign(s, m)
80 let m̂ = E(signature, m, σ)
81 return (m̂, 1, c, ε)

clientReceive(c, s, i, m̂)

82 let c̄ = userNr(c) and s̄ = userNr(s)
83 if |µi

c̄,s̄| 6= lnonce, return (ε, 0, µi
c̄,s̄)

84 try
85 let (m, σ) = D(signature, m̂)
86 let (s′, c′, r, p) = D(response, m)
87 if any error occurred while decoding
88 or c′ 6= c or s′ 6= s or r 6= µi

c̄,s̄
89 or verify(s, m, σ) = 0
90 return (ε, 0)
91 let µi

c̄,s̄ = 0lnonce+1

92 return (p, 1)

corrupt(a)
93 let ā = userNr(a)
94 if ā = x
95 stop the simulation, but return no forgery
96 return sksig

ā

sign(a, β)

97 let ā = userNr(a)
98 if ā 6= x
99 return S(β, sksig

ā )
100 else
101 let σ = Ω?(β)
102 add(M, β, σ)
103 return σ

verify(a, β, σ)

104 let ā = userNr(a)
105 let b = V(β, σ, pksig

ā )
106 if ā = x and b = 1 and lookup(M, β) = ε
107 stop the simulation and return (β, σ) as a forgery
108 return b





B. IITM’s for Secure Two-Round Message
Exchange

B.1. Ideal Functionality

B.1.1. Message Exchange Functionality FMX(leak, pw-auth)
Parameters:

Description Parameter Type
Leakage leak {1}∗ × {0, 1}∗ → {0, 1}∗
Authentication Mode pw-auth {true, false}

Tapes: MX←←→ Ec
MX, MX←←→ Es

MX, MX←←→ SM, MX L9999K AMX

Variables and Initialization:
Variable Type Initial Value
state, nc, ns N 0
pc, ps, pw, sidc, sids, sidA {0, 1}∗ ⊥
repliedc, server-only, corc, cors, revealedc, revealeds, testedpw {true, false} false

Steps: loop

Request to send request message: (B.1)
if (sidc, Request, pc, pw, 1nc ) is received from Ec

MX while state = 0, do
Generate η-bit nonces sidA and sids randomly.
Send (sidA, Request, leak(1η , pc), |pw| , nc) to AMX and let state = 1.

Approval to send request message: (B.2)
if (sidA, RequestOK, p′c, pw′) is received from AMX while state = 1, do

If corc,
If p′c 6= ε, let pc = p′c.
If pw′ 6= ε, let pw = pw′.

Send (sids, GetSession) to SM and let state = 2.

Resources to send request message: (B.3)
if (sids, Session, 1ns ) is received from SM while state = 2, do

If |pc|+ |pw| ≥ ns, let state = 5 and break.
Send (Testinternal, pw) to SM.
Recv (Testinternal, b) from SM.
If ¬b, let state = 5 and break.
Send (sids, Request, pc) to Es

MX and let state = 3.

Request to send response message: (B.4)
if (sids, Response, ps) is received from Es

MX while state = 3, do
If server-only∨ repliedc, let state = 5, else let state = 4.
Send (sidA, Response, leak(1η , ps)) to AMX.

Approval to send response message: (B.5)
if (sidA, ResponseOK, p′s) is received from AMX while (state = 4) ∨ (cors ∧ (state ∈ {1, 2, 3})), do

If (p′s 6= ε) ∧ cors let ps = p′s.
If |ps| ≥ nc, let state = 5 and break.
If state = 4 then let state = 5, else let repliedc = true.
Send (sidc, Response, ps) to Ec

MX.
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Figure B.1.: States and steps of the functionality FMX

Expire this session on server side: (B.6)
if (sidA, Expire) is received from AMX while state = 3, do

Send (sidA, ExpireOK) to AMX and let state = 5.

Request to send response message in non-existent or expired session: (B.7)
if (sids, Response, ps) received from Es

MX with sids 6= ε while state = 0, or
if (sids, Response, ps) received from Es

MX while state > 3, do
Send (sids, ResponseError) to Es

MX and if state = 0, halt.

Start of a server-only session: (B.8)
if (Session, corc, pc) is received from SM while state = 0, do

Generate η-bit nonces sidA and sids randomly.
Send (sidA, Session) to AMX.
Recv (sidA, SessionOK) from AMX.
Send (sids, Request, pc) to Es

MX, let server-only = true and let state = 3.

Test if password is correct: (B.9)
if (sidA, Test) is received from AMX while (state = 1) ∧ pw-auth∧ ¬testedpw, do

Send (Test, pw) to SM and let testedpw = true.

Corrupt this session: (B.10)
if (sidA, Corrupt, x) is received from AMX with x ∈ {c, s} while (state > 0) ∧ ¬corx , do

Send (sidA, CorruptOK, x) to AMX and let corx = true.

Reveal payload and password in a corrupted session: (B.11)
if (sidA, Reveal, x) is received from AMX with x ∈ {c, s} while (state > 0) ∧ corx ∧ ¬revealedx , do

Send (sidA, Reveal, x, px , pw) to AMX and let revealedx = true.
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Corruption status: (B.12)
if (sidx , Corrupted?) is received from Ex

MX with ((x = c) ∧ (state > 0) ∧ ¬server-only) ∨ ((x = s) ∧ (state > 2)),
do

Send (sidx , Corrupted, corx) to Ex
MX.

Provide resources for corrupted sessions: (B.13)
if (sidx , Resources, 1n′ ) is received from Ex

MX with x ∈ {c, s} while state > 0, do
Send (sidA, Resources, x, 1n′ ) to AMX.

CheckAddress:

– If state = 0, accept any message.
– If sidc 6= ⊥, accept all messages from Ec

MX starting with sidc.
– If sids 6= ⊥, accept all messages from Es

MX and SM starting with sids.
– If sidA 6= ⊥, accept all messages from AMX starting with sidA.

B.1.2. Server Management Functionality FSM(pw-auth)
Parameters:

Description Parameter Type
Authentication Mode pw-auth {true, false}

Tapes: SM←←→ ESM, SM←→→ MX, SM L9999K ASM

Variables and Initialization:
Variable Type Initial Value
state N 0
U {0, 1}∗ → {0, 1}∗ ⊥
n N 0

Steps: loop

Initialization and Users: (B.14)
if (Init, U) is received from ESM while state = 0, do

Send (Init) to ASM.
Recv (InitOK) from ASM.
Set state = 1.

Receive resources: (B.15)
if (Resources, 1n) is received from ESM while state = 1, do

Send (Resources, 1n) to ASM.

Initialize a regular session: (B.16)
if (c, sids, GetSession) is received from MX while (state = 1) ∧ (n > 0), do

Send (c, sids, Session, 1n) to MX and let n = 0.

Initialize a server-only session with the correct password: (B.17)
if (Session, c, cor, pw, pc) is received from ASM while (state = 1) ∧ pw-auth, do

If |pc|+ |pw| ≥ n, break.
Let n = 0.
If U(c) 6= pw, break.
Send (c, Session, cor, pc) to MX.

Let the adversary test a password: (B.18)
if (c, Test, pw) is received from ASM or MX while pw-auth∧ (n > 0), do

Let n = n− 1.
Send (c, Test, U(c) = pw) to ASM.

Internally test a password: (B.19)
if (c, Testinternal, pw) is received from MX while pw-auth, do

Send (c, Testinternal, U(c) = pw) to MX.
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B.1.3. Enriching Input Functionality FEI

Tapes: EI� EEI, EI 99K AEI

Steps: loop

Forward resources: (B.20)
if (Resources, 1n) is received from EEI, do

Send (Resources, n) to AEI.

B.2. Realization

B.2.1. Client Functionality (SA) PSA
C

Tapes: C←←→ EC
MX, C L9999K AC, C←→→ KSsig, C←→→ LC, Csig ←→→ SIG, Cver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, nc N 0
s, c, sidc, r {0, 1}∗ ⊥

Steps: loop

Send a request to the server: (B.21)
if (s, c, sidc, Request, pc, pw, 1nc ) is received from Ec

MX while state = 0, do
Let state = 1.
Generate an η-bit nonce r randomly.
Send (c, (C, s, r), GetTime) to LC.
Recv (c, (C, s, r), Time, t) from LC.
Let mc = (From : c, To : s, MsgID : r, Time : t, Body : pc).
Send (c, (C, s, r), GetKey) to KSsig.
Recv (c, (C, s, r), PublicKey, pksig

c ) from KSsig.
Send (c, (C, s, r), Sign, mc) to SIG on Csig.
Recv (c, (C, s, r), Signature, σc) from SIG on Csig.
Send (mc, σc) to AC and let state = 1.

Receive and process a response from the server: (B.22)
if (ms, σs) is received from AC with ms = (From : c, To : s, Ref : r, Body : ps) while state = 1, do

Let state = 3.
If |ps| ≥ nc, break.
Send (s, (S, c, r), GetKey) to KSsig.
Recv (s, (S, c, r), PublicKey, pksig

s ) from KSsig.
Send (s, (S, c, r), C, Init) to SIG on Cver.
Recv (s, (S, c, r), C, Inited) from SIG on Cver.
Send (s, (S, c, r), C, Verify, ms, σs, pksig

s ) to SIG on Cver.
Recv (s, (S, c, r), C, Verified, b) from SIG on Cver.
If ¬b, break.
Send (s, c, sidc, Response, ps) to Ec

MX.

Provide resources for corrupted signature scheme: (B.23)
if (s, c, sidc, Corrupt, 1n′ ) is received from Ec

MX while state > 0, do
Send (c, (C, s, r), Resources, 1n′ ) to KSsig.

Corruption status: (B.24)
if (s, c, sidc, Corrupted?) is received from Ec

MX while state > 0, do
Send (c, (C, s, r), Corrupted?) to KSsig.
Recv (c, (C, s, r), Corrupted, cor1) from KSsig.
Send (c, (C, s, r), S, Corrupted?) to KSsig.
Recv (c, (C, s, r), S, Corrupted, cor2) from KSsig.
Send (s, c, sidc, Corrupted, cor1 ∨ cor2) to Ec

MX.

CheckAddress: Accept any message that is accepted by one of the steps.
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B.2.2. Client Functionality (CSA) PCSA
C

Tapes: C←←→ EC
MX, C L9999K AC, C←→→ KSae, C←→→ KSsig, C←→→ LC, C←→→ ENC, Csig ←→→ SIG,

Cver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, nc N 0
s, c, sidc, r {0, 1}∗ ⊥
ptr key pointer ⊥

Steps: loop

Send a request to the server: (B.25)
if (s, c, sidc, Request, pc, pw, 1nc ) is received from Ec

MX while state = 0, do
Let state = 1.
Generate an η-bit nonce r randomly.
Send (c, (C, s, r), GetTime) to LC.
Recv (c, (C, s, r), Time, t) from LC.
Send ((s, c, r), KeyGen) to ENC.
Recv ((s, c, r), KeyGen, ptr) from ENC.
Send (s, (C, c, r), GetKey) to KSae.
Recv (s, (C, c, r), PublicKey, pkae) from KSae.
Send (s, (C, c, r), Initialize) to ENC.
Recv (s, (C, c, r), Completed) from ENC.
Send (s, (C, c, r), Enc, pkae, (Key, ptr)) to ENC.
Recv (s, (C, c, r), Ciphertext, $k) from ENC.
Send ((s, c, r), Enc, ptr, pc) to ENC.
Recv ((s, c, r), Ciphertext, $c) from ENC.
Let mc = (From : c, To : s, MsgID : r, Time : t, Key : $k , Body : $c).
Send (c, (C, s, r), GetKey) to KSsig.
Recv (c, (C, s, r), PublicKey, pksig

c ) from KSsig.
Send (c, (C, s, r), Sign, mc) to SIG on Csig.
Recv (c, (C, s, r), Signature, σc) from SIG on Csig.
Send (mc, σc) to AC and let state = 1.

Receive and process a response from the server: (B.26)
if (ms, σs) is received from AC with ms = (From : c, To : s, Ref : r, Body : $s) while state = 1, do

Let state = 3.
If |$s| ≥ nc, break.
Send (s, (S, c, r), GetKey) to KSsig.
Recv (s, (S, c, r), PublicKey, pksig

s ) from KSsig.
Send (s, (S, c, r), C, Init) to SIG on Cver.
Recv (s, (S, c, r), C, Inited) from SIG on Cver.
Send (s, (S, c, r), C, Verify, ms, σs, pksig

s ) to SIG on Cver.
Recv (s, (S, c, r), C, Verified, b) from SIG on Cver.
If ¬b, break.
Send ((s, c, r), Dec, ptr, $s) to ENC.
Recv ((s, c, r), Plaintext, ps) from ENC.
Send (s, c, sidc, Response, ps) to Ec

MX.

Provide resources for corrupted signature scheme: (B.27)
if (s, c, sidc, Corrupt, 1n′ ) is received from Ec

MX while state > 0, do
Send (c, (C, s, r), Resources, 1n′ ) to KSsig.
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Corruption status: (B.28)
if (s, c, sidc, Corrupted?) is received from Ec

MX while state > 0, do
Send (s, (C, c, r), Corrupted?) to KSae.
Recv (s, (C, c, r), Corrupted, cor1) from KSae.
Send (c, (C, s, r), Corrupted?) to KSsig.
Recv (c, (C, s, r), Corrupted, cor2) from KSsig.
Send (c, (C, s, r), S, Corrupted?) to KSsig.
Recv (c, (C, s, r), S, Corrupted, cor3) from KSsig.
Send ((s, c, r), Corrupted?, ptr) to ENC.
Recv ((s, c, r), CorruptionState, cor4) from ENC.
Send (s, c, sidc, Corrupted, cor1 ∨ cor2 ∨ cor3 ∨ cor4) to Ec

MX.

CheckAddress: Accept any message that is accepted by one of the steps.

B.2.3. Client Functionality (PA) PPA
C

Tapes: C←←→ EC
MX, C L9999K AC, C←→→ KSae, C←→→ KSsig, C←→→ LC, C←→→ ENC, Csig ←→→ SIG,

Cver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, nc N 0
s, c, sidc, r, Hr {0, 1}∗ ⊥

Steps: loop

Send a request to the server: (B.29)
if (s, c, sidc, Request, pc, pw, 1nc ) is received from Ec

MX while state = 0, do
Let state = 1.
Generate an η-bit nonce r1 randomly.
Send (GetRO, r) to RO.
Recv (RO, Hr) from RO.
Send (c, (C, s, Hr), GetTime) to LC.
Recv (c, (C, s, Hr), Time, t) from LC.
Let mc = (From : c, To : s, MsgID : Hr , Time : t, Body : pc).
Send (GetRO, mc) to RO.
Recv (RO, Hmc ) from RO.
Let m′c = (SecMsgID : r, Pass : pw, MsgHash : Hmc ).
Send (s, (C, c, Hr), GetKey) to KSae.
Recv (s, (C, c, Hr), PublicKey, pkae) from KSae.
Send (s, (C, c, Hr), Initialize) to ENC.
Recv (s, (C, c, Hr), Completed) from ENC.
Send (s, (C, c, Hr), Enc, pkae, m′c) to ENC.
Recv (s, (C, c, Hr), Ciphertext, $c) from ENC.
Send (mc, $c) to AC and let state = 1.

Receive and process a response from the server: (B.30)
if (ms, σs) is received from AC with ms = (From : c, To : s, Ref : Hr , Body : ps) while state = 1, do

Let state = 3.
If |ps| ≥ nc, break.
Send (s, (S, c, Hr), GetKey) to KSsig.
Recv (s, (S, c, Hr), PublicKey, pksig

s ) from KSsig.
Send (s, (S, c, Hr), C, Init) to SIG on Cver.
Recv (s, (S, c, Hr), C, Inited) from SIG on Cver.
Send (s, (S, c, Hr), C, Verify, ms, σs, pksig

s ) to SIG on Cver.
Recv (s, (S, c, Hr), C, Verified, b) from SIG on Cver.
If ¬b, break.
Send (s, c, sidc, Response, ps) to Ec

MX.
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Provide resources for corruption: (B.31)
if (s, c, sidc, Corrupt, 1n′ ) is received from Ec

MX while state > 0, do
Break.

Corruption status: (B.32)
if (s, c, sidc, Corrupted?) is received from Ec

MX while state > 0, do
Send (s, (C, c, Hr), Corrupted?) to KSae.
Recv (s, (C, c, Hr), Corrupted, cor) from KSae.
Send (s, c, sidc, Corrupted, cor) to Ec

MX.

CheckAddress: Accept any message that is accepted by one of the steps.

B.2.4. Server Functionality (SA) PSA
S

Tapes: S←←→ ES
MX, S L9999K AS, S←→→ KSsig, S←→→ LC, Ssig ←→→ SIG, Sver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, n, cap N 0
U {0, 1}∗ → {0, 1}∗ ⊥
c, s, r, mc, ms, σc, pc, ps, pksig

c , pksig
s , tc, ts, tmin, tol+ {0, 1}∗ ⊥

L, Lcor sets of 4-tuples of {0, 1}∗ [ ]

Steps: loop

Initialization and Users: (B.33)
if (s, Init, U) is received from ESM while state = 0, do

Send (s, GetParameters) to AS.
Recv (s, Parameters, cap, tol+) from AS with cap > 0 and tol+ > 0.
Send (s, S, GetTime) to LC.
Recv (s, S, Time, ts) from LC.
Let tmin = ts + tol+ and let state = 1.

Receive resources: (B.34)
if (s, Resources, 1n) is received from ESM while state > 0, do

Break.

Receive and process a request: Request the client’s key: (B.35)
if (mc, σc) is received from AS with mc = (From : c, To : s, MsgID : r, Time : tc, Body : pc) while state > 0, do

If |pc| ≥ n, break.
Let n = 0.
Send (c, (C, s, r), GetKey) to KSsig and let state = 2.

Receive and process a request: Receive the key, request time: (B.36)
if (c, (C, s, r), PublicKey, pksig

c ) is received from KSsig while state = 2, do
Send (s, S, GetTime) to LC and let state = 3.

Receive and process a request: Receive time, initialize the verifier: (B.37)
if (s, S, Time, ts) is received from LC while state = 3, do

Send (c, (C, s, r), S, Init) on Sver and let state = 4.

Receive and process a request: Verifier initialized, request verification: (B.38)
if (c, (C, s, r), S, Inited) is received on Sver while state = 4, do

Send (c, (C, s, r), S, Verify, mc, σc, pksig
c ) on Sver and let state = 5.

Receive and process a request: Execute protocol steps, relay request: (B.39)
if (c, (C, s, r), S, Verified, b) is received on Sver while state = 5, do

If (¬b) ∨ (tc ≤ tmin) ∨ (tc > ts + tol+) ∨ (∃t′, c′, sid′s : (t′, r, c′, sid′s) ∈ L), break.
While |L| ≥ cap:

Let tmin = min{t′ | (t′, r′, c′, sid′s) ∈ L} and L = {(t′, r′, c′, sid′s) ∈ L | t′ > tmin}.
Generate an η-bit nonce sids randomly.
Insert (tc, r, c, sids) into L and Lcor.
Send (s, c, sids, Request, pc) to Es

MX and let state = 1.



150 B. IITM’s for Secure Two-Round Message Exchange

Receive and process a response: Receive response payload, request key: (B.40)
if (s, c, sids, Response, ps) is received from Es

MX with sids 6= ε while state > 0, do
If ¬∃t, r, c : (t, r, c, sids) ∈ L,

Send (s, sids, ResponseError) to Es
MX and break.

Fetch (tc, r, c, sids) from L.
Update the entry (tc, r, c, sids) in L to (tc, r, c, ε).
Let ms = (From : c, To : s, Ref : r, Body : ps).
Send (s, (S, c, r), GetKey) to KSsig and let state = 6.

Receive and process a response: Construct response message and request signature: (B.41)
if (s, (S, c, r), PublicKey, pksig

s ) is received from KSsig while state = 6, do
Send (s, (S, c, r), Sign, ms) on Ssig and let state = 7.

Receive and process a response: Receive signature, send out message: (B.42)
if (s, (S, c, r), Signature, σs) is received on Ssig while state = 7, do

Send (ms, σs) to AS and let state = 1.

Reset the server: (B.43)
if (s, Reset) is received from AS while state > 0, do

Let tmin = ts + tol+, let L = [ ] and state = 1.

Request to send response message for non-initialized server: (B.44)
if (s, c, sids, Response, ps) is received from Es

MX with sids 6= ε while state = 0, do
Send (s, sids, ResponseError) to Es

MX and halt.

Provide resources for corrupted signature scheme: (B.45)
if (s, sid′s, Corrupt, 1n′ ) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′ : (t′, r′, c′, sid′s) ∈ Lcor, break.
Fetch (t′, r′, c′, sid′s) from Lcor.
Send (s, (S, c′, r′), Resources, 1n′ ) to KSsig.

Corruption status: (B.46)
if (s, sids, Corrupted?) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′ : (t′, r′, c′, sids) ∈ Lcor, break.
Fetch (t′, r′, c′, sids) from Lcor.
Send (s, (S, c′, r′), Corrupted?) to KSsig.
Recv (s, (S, c′, r′), Corrupted, cor1) from KSsig.
Send (s, (S, c′, r′), C, Corrupted?) to KSsig.
Recv (s, (S, c′, r′), C, Corrupted, cor2) from KSsig.
Send (s, sids, Corrupted, cor1 ∨ cor2) to Es

MX.

CheckAddress: Accept any message that is accepted by one of the steps.

B.2.5. Server Functionality (CSA) PCSA
S

Tapes: S←←→ ES
MX, S L9999K AS, S←→→ KSae, S←→→ KSsig, S←→→ LC, S←→→ ENC, Ssig ←→→ SIG, Sver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, n, cap N 0
U {0, 1}∗ → {0, 1}∗ ⊥
c, s, r, mc, ms, σc, $k , $c, pc, ps, pksig

c , pksig
s , tc, ts, tmin, tol+, b {0, 1}∗ ⊥

L, Lcor sets of 5-tuples of {0, 1}∗ [ ]
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Steps: loop

Initialization and Users: (B.47)
if (s, Init, U) is received from ESM while state = 0, do

Send (s, GetParameters) to AS.
Recv (s, Parameters, cap, tol+) from AS with cap > 0 and tol+ > 0.
Send (s, S, GetKey) to KSae.
Recv (s, S, PublicKey, pkae) from KSae.
Send (s, S, GetTime) to LC.
Recv (s, S, Time, ts) from LC.
Let tmin = ts + tol+ and let state = 1.

Receive resources: (B.48)
if (s, Resources, 1n) is received from ESM while state > 0, do

Break.

Receive and process a request: Request the client’s key: (B.49)
if (mc, σc) is received from AS with mc = (From : c, To : s, MsgID : r, Time : tc, Key : $k , Body : $c) while state > 0,

do

If |$c| ≥ n, break.
Let n = 0.
Send (c, (C, s, r), GetKey) to KSsig and let state = 2.

Receive and process a request: Receive the key, request time: (B.50)
if (c, (C, s, r), PublicKey, pksig

c ) is received from KSsig while state = 2, do
Send (s, S, GetTime) to LC and let state = 3.

Receive and process a request: Receive time, initialize the verifier: (B.51)
if (s, S, Time, ts) is received from LC while state = 3, do

Send (c, (C, s, r), S, Init) on Sver and let state = 4.

Receive and process a request: Verifier initialized, request verification: (B.52)
if (c, (C, s, r), S, Inited) is received on Sver while state = 4, do

Send (c, (C, s, r), S, Verify, mc, σc, pksig
c ) on Sver and let state = 5.

Receive and process a request: Decrypt session key: (B.53)
if (c, (C, s, r), S, Verified, b) is received on Sver while state = 5, do

Send (s, Dec, $k) to ENC and let state = 6.

Receive and process a request: Decrypt payload, execute protocol steps, relay request: (B.54)
if (s, Plaintext, (Key, ptr)) is received from ENC while state = 6, do

Send ((s, c, r), Dec, ptr, $c) to ENC.
Recv ((s, c, r), Plaintext, pc) from ENC.
If (¬b) ∨ (tc ≤ tmin) ∨ (tc > ts + tol+) ∨ (∃t′, c′, sid′s : (t′, r, c′, sid′s) ∈ L), break.
While |L| ≥ cap:

Let tmin = min{t′ | (t′, r′, c′, sid′s, ptr′) ∈ L} and L = {(t′, r′, c′, sid′s, ptr′) ∈ L | t′ > tmin}.
Generate an η-bit nonce sids randomly.
Insert (tc, r, c, sids, ptr) into L and Lcor.
Send (s, c, sids, Request, pc) to Es

MX and let state = 1.

Receive and process a response: Receive response payload, request key: (B.55)
if (s, c, sids, Response, ps) is received from Es

MX with sids 6= ε while state > 0, do
If ¬∃t, r, c : (t, r, c, sids, ptr) ∈ L,

Send (s, sids, ResponseError) to Es
MX and break.

Fetch (tc, r, c, sids, ptr) from L.
Update the entry (tc, r, c, sids, ptr) in L to (tc, r, c, ε, ptr).
Send ((s, c, r), Enc, ptr, ps) to ENC.
Recv ((s, c, r), Ciphertext, $s) from ENC.
Let ms = (From : c, To : s, Ref : r, Body : $s).
Send (s, (S, c, r), GetKey) to KSsig and let state = 7.

Receive and process a response: Construct response message and request signature: (B.56)
if (s, (S, c, r), PublicKey, pksig

s ) is received from KSsig while state = 7, do
Send (s, (S, c, r), Sign, ms) on Ssig and let state = 8.
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Receive and process a response: Receive signature, send out message: (B.57)
if (s, (S, c, r), Signature, σs) is received on Ssig while state = 8, do

Send (ms, σs) to AS and let state = 1.

Reset the server: (B.58)
if (s, Reset) is received from AS while state > 0, do

Let tmin = ts + tol+, let L = [ ] and state = 1.

Request to send response message for non-initialized server: (B.59)
if (s, c, sids, Response, ps) is received from Es

MX with sids 6= ε while state = 0, do
Send (s, sids, ResponseError) to Es

MX and halt.

Provide resources for corrupted signature scheme: (B.60)
if (s, sid′s, Corrupt, 1n′ ) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′, ptr′ : (t′, r′, c′, sid′s, ptr′) ∈ Lcor, break.
Fetch (t′, r′, c′, sid′s, ptr′) from Lcor.

Send (s, (S, c′, r′), Resources, 1n′ ) to KSsig.

Corruption status: (B.61)
if (s, sids, Corrupted?) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′, ptr′ : (t′, r′, c′, sids, ptr′) ∈ Lcor, break.
Fetch (t′, r′, c′, sids, ptr′) from Lcor.
Send (s, (C, c′, r′), Corrupted?) to KSae.
Recv (s, (C, c′, r′), Corrupted, cor1) from KSae.
Send (s, (S, c′, r′), Corrupted?) to KSsig.
Recv (s, (S, c′, r′), Corrupted, cor2) from KSsig.
Send (s, (S, c′, r′), C, Corrupted?) to KSsig.
Recv (s, (S, c′, r′), C, Corrupted, cor3) from KSsig.
Send ((s, c′, r′), Corrupted?, ptr) to ENC.
Recv ((s, c′, r′), CorruptionState, cor4) from ENC.
Send (s, sids, Corrupted, cor1 ∨ cor2 ∨ cor3 ∨ cor4) to Es

MX.

CheckAddress: Accept any message that is accepted by one of the steps.

B.2.6. Server Functionality (PA) PPA
S

Tapes: S←←→ ES
MX, S L9999K AS, S←→→ KSae, S←→→ KSsig, S←→→ LC, S←→→ ENC, Ssig ←→→ SIG, Sver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, n, cap N 0
U {0, 1}∗ → {0, 1}∗ ⊥
c, s, r, Hr , mc, ms, $c, pc, ps, tc, ts, tmin, tol+ {0, 1}∗ ⊥
L, Lcor sets of 4-tuples of {0, 1}∗ [ ]

Steps: loop

Initialization and Users: (B.62)
if (s, Init, U) is received from ESM while state = 0, do

Send (s, GetParameters) to AS.
Recv (s, Parameters, cap, tol+) from AS with cap > 0 and tol+ > 0.
Send (s, S, GetKey) to KSae.
Recv (s, S, PublicKey, pkae) from KSae.
Send (s, S, GetTime) to LC.
Recv (s, S, Time, ts) from LC.
Let tmin = ts + tol+ and let state = 1.

Receive resources: (B.63)
if (s, Resources, 1n) is received from ESM while state > 0, do

Break.
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Receive and process a request: Request time: (B.64)
if (mc, $c) is received from AS with mc = (From : c, To : s, MsgID : Hr , Time : tc, Body : pc) while state > 0, do

If |pc|+ |$c| ≥ n− 1, break.
Let n = 0.
Send (s, S, GetTime) to LC and let state = 2.

Receive and process a request: Receive time, request decryption: (B.65)
if (s, S, Time, ts) is received from LC while state = 2, do

Send (s, Dec, $c) to ENC and let state = 3.

Receive and process a request: Execute protocol steps, relay request: (B.66)
if (s, Plaintext, m′c) is received from ENC with m′c = (SecMsgID : r, Pass : pw, MsgHash : Hmc ) while state = 3, do

Send (GetRO, r) to RO.
Recv (RO, H′r) from RO.
Send (GetRO, mc) to RO.
Recv (RO, H′mc ) from RO.
If (Hmc 6= H′mc ) ∨ (Hr 6= H′r) ∨ (U(c) 6= pw) ∨ (tc ≤ tmin) ∨ (tc >

ts + tol+) ∨ (∃t′, c′, sid′s : (t′, r, c′, sid′s) ∈ L), break.
While |L| ≥ cap:

Let tmin = min{t′ | (t′, r′, c′, sid′s) ∈ L} and L = {(t′, r′, c′, sid′s) ∈ L | t′ > tmin}.
Generate an η-bit nonce sids randomly.
Insert (tc, r, c, sids) into L and Lcor.
Send (s, sids, Request, pc) to Es

MX and let state = 1.

Receive and process a response: Receive response payload, request key: (B.67)
if (s, sids, Response, ps) is received from Es

MX with sids 6= ε while state > 0, do
If ¬∃t′, r′, c′ : (t′, r′, c′, sids) ∈ L,

Send (s, sids, ResponseError) to Es
MX and break.

Fetch (tc, r, c, sids) from L.
Update the entry (tc, r, c, sids) in L to (tc, r, c, ε).
Send (GetRO, r) to RO.
Recv (RO, Hr) from RO.
Send (s, (S, c, Hr), GetKey) to KSsig and let state = 6.

Receive and process a response: Construct response message and request signature: (B.68)
if (s, (S, c, Hr), PublicKey, pksig

s ) is received from KS while state = 6, do
Let ms = (From : s, To : c, Ref : Hr , Body : ps).
Send (s, (S, c, Hr), Sign, ms) on Ssig and let state = 7.

Receive and process a response: Receive signature, send out message: (B.69)
if (s, (S, c, Hr), Signature, σs) is received on Ssig while state = 7, do

Send (ms, σs) to AS and let state = 1.

Reset the server: (B.70)
if (s, Reset) is received from AS while state > 0, do

Let tmin = ts + tol+, let L = [ ] and state = 1.

Request to send response message for non-initialized server: (B.71)
if (s, c, sids, Response, ps) is received from Es

MX with sids 6= ε while state = 0, do
Send (s, sids, ResponseError) to Es

MX and halt.

Provide resources for corrupted signature scheme: (B.72)
if (s, sid′s, Corrupt, 1n′ ) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′ : (t′, r′, c′, sids) ∈ Lcor, break.
Fetch (t′, r′, c′, sids) from Lcor.
Send (s, (S, c′, H(r′)), Resources, 1n′ ) to KSsig.
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Corruption status: (B.73)
if (s, sids, Corrupted?) is received from Es

MX while state > 0, do
If ¬∃t′, r′, c′ : (t′, r′, c′, sids) ∈ Lcor, break.
Fetch (t′, r′, c′, sids) from Lcor.
Send (s, (C, c′, H(r′)), Corrupted?) to KSae.
Recv (s, (C, c′, H(r′)), Corrupted, cor1) from KSae.
Send (s, (S, c′, H(r′)), Corrupted?) to KSsig.
Recv (s, (S, c′, H(r′)), Corrupted, cor2) from KSsig.
Send (s, (S, c′, H(r′)), C, Corrupted?) to KSsig.
Recv (s, (S, c′, H(r′)), C, Corrupted, cor3) from KSsig.
Send (s, sids, Corrupted, cor1 ∨ cor2 ∨ cor3) to Es

MX.

CheckAddress: Accept any message that is accepted by one of the steps.

B.2.7. Signature Key Store Functionality F
KSsig

Tapes: KSsig ←←→ SI, KSsig ←←→ C, KSsig ←←→ S, KSsig L9999K AKSsig , KSsig
sig ←→→ SIG, KSsig

ver ←→→ SIG, Esig ←→→ SIG,
Ever ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
pksig {0, 1}∗ ⊥
L list of {0, 1}∗ [ ]

Steps: loop

Request to get the key: (B.74)
if (GetKey) is received from T ∈ {C, S, SI}, do

Insert T into L.
Send (GetKey, T) to AKSsig .

Execute request to get the key: (B.75)
if (GetKey, T) is received from AKSsig , do

If T /∈ L, break.
If pksig = ⊥, send (Init) on KSsig

sig and break.
Delete T from L.
Send (PublicKey, pksig) to T.

Store a generated key and notify the adversary: (B.76)
if (PublicKey, pksig) is received on KSsig

sig, do

Send (PublicKey, pksig) to AKSsig .

Is the signature functionality corrupted? (B.77)
if (Corrupted?) is received from T ∈ {C, S}, do

If pksig = ⊥, send (Corrupted, false) to T and break.
Send (Corrupted?) on Esig.
Receive (b) on Esig.
Send (Corrupted, b) to T.

Is a verification functionality corrupted? (B.78)
if (sid, Corrupted?) is received from T ∈ {C, S}, do

If pksig = ⊥, send (sid, Corrupted, false) to T and break.
Send (sid, Corrupted?) on Ever.
Receive (sid, b) on Ever.
Send (sid, Corrupted, b) to T.
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B.2.8. Public Key Encryption Key Store Functionality FKSae

Tapes: KSae ←←→ C, KSae ←←→ S, KSae L9999K AKSae , KSae ←→→ ENC

Variables and Initialization:
Variable Type Initial Value
pkae {0, 1}∗ ⊥
L list of {0, 1}∗ [ ]

Steps: loop

Request to get the key: (B.79)
if (p, GetKey) is received from T ∈ {C, S}, do

Insert (p, T) into L.
Send (p, GetKey, T) to AKSae .

Execute request to get the key: (B.80)
if (p, GetKey, T) is received from AKSae , do

If (p, T) /∈ L, break.
If pkae = ⊥, send (KeyGen) to ENC and break.
Delete (p, T) from L.
Send (p, PublicKey, pkae) to T.

Store a generated key and notify the adversary: (B.81)
if (PublicKey, pkae) is received from ENC, do

Send (PublicKey, pkae) to AKSae .

Is the public key encryption functionality corrupted? (B.82)
if (p, Corrupted?) is received from T ∈ {C, S}, do

If pkae = ⊥, send (p, Corrupted, false) to T and break.
Send (Corrupted?) to ENC.
Receive (CorruptionState, x) on Esig.
Send (p, Corrupted, x) to T.

B.2.9. Signature Interface Functionality PSI(except)
Parameters:

Description Parameter Type
Exception Function except {0, 1}∗ → {true, false}

Tapes: SI� EEI, SI L9999K ASI, SI←→→ KSsig, SIsig ←→→ SIG, SIver ←→→ SIG

Variables and Initialization:
Variable Type Initial Value
state, n N 0
pksig {0, 1}∗ ⊥

Steps: loop

Get resources from the environment to sign messages: (B.83)
if (Resources, 1n) is received from EEI, do

Let state = 1.

Initialize the key and the verification functionality: (B.84)
if (Init) is received from ASI while state = 1, do

Send (GetKey) to KSsig.
Receive (PublicKey, pksig) from KSsig.
Send (SI, Init) on SIver.
Receive (SI, Inited) on SIver.
Send (PublicKey, pksig) to ASI and let state = 2.
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Sign a message: (B.85)
if (Sign, m) is received from ASI while state = 2, do

If (except(m)) ∨ (|m| > n), break.
Let n = 0.
Send (Sign, m) on SIsig.
Receive (Signature, σ) on SIsig.
Send (Signature, σ) to ASI.

Verify a message: (B.86)
if (Verify, m, σ) is received from ASI while state = 2, do

If |m| > n, break.
Let n = 0.
Send (SI, Verify, m, σ, pksig) on SIver.
Receive (SI, Verified, b) on SIver.
Send (Verified, b) to ASI.

B.2.10. Signature Interface Dummy Realization Pdummy
SI

Tapes: SI� EEI

Steps: loop

Receive resources: (B.87)
if (Resources, 1n) is received from EEI, do

Break.

B.2.11. Local Clock Functionality FLC

Tapes: LC←←→ C, LC←←→ S, LC L9999K ALC

Variables and Initialization:
Variable Type Initial Value
t N 0

Steps: loop

Time Request: (B.88)
if (GetTime) is received from T ∈ {C, S}, do

Send (GetTime) to ALC.
Recv (Time, t′) from ALC.
If t′ ≥ t, let t = t′.
Send (Time, t) to T.

B.2.12. Random Oracle Functionality FRO

Tapes: RO←←→ C, RO←←→ S, RO L9999K ARO

Variables and Initialization:
Variable Type Initial Value
H subset of {0, 1}∗ × {0, 1}η ∅
n N 0
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Steps: loop

Retrieve a value: (B.89)
if (GetRO, m) is received from T ∈ {C, S, ARO} with (n > 0) ∨ (T 6= ARO), do

If ¬∃h : (m, h) ∈ H,
Generate an η-bit value h randomly.
Let H = H ∪ {(m, h)}.

Fetch (m, h) from H.
If T = ARO, let n = n− 1, else let n = n + 1.
Send (RO, h) to T.

B.3. Simulators

B.3.1. Simulator (SA) SSA
S2ME(except)

Parameters:
Description Parameter Type
Exception Function except {0, 1}∗ → {true, false}

Tapes: C L99L9999K AC, S L99L9999K AS, AEI L9999K EI, AMX L9999KMX, ASM L9999K SM,
plus the tapes between the adversary and the simulated machines (see below)

Variables and Initialization:
Variable Type Initial Value
sessions subset of ({0, 1}∗)4 ∅
state, n, cap associative array of N 0
t, tmin, tol+ associative array of {0, 1}∗ ⊥
L associative array of sets of 4-tuples of {0, 1}∗ [ ]
cor associative array of {true, false} false

Steps: loop

Initialization of a server: (B.90)
if (s, Init) is received from SM, do

Run processServerInit(s) concurrently.

Request to send the request message: (B.91)
if (s, c, sidA, Request, pc, lpw, nc) is received from MX, do

Run processRequestRequest(s, c, sidA, pc, nc) concurrently.

Approval to send the request message: (B.92)
if (mc, σc) is received from AS with mc = (From : c, To : s, MsgID : r, Time : tc, Body : pc) while state[s] > 0, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processRequestApproval(mc, σc) concurrently.

Request to send the response message: (B.93)
if (s, c, sidA, Response, ps) is received from MX, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processResponseRequest(s, c, sidA, ps) concurrently.

Approval to send the response message: (B.94)
if (ms, σs) is received from AC with ms = (From : s, To : c, Ref : r, Body : ps) while state[c, s, r] = 2, do

Run processResponseApproval(ms, σs) concurrently.

Reset the server: (B.95)
if (s, Reset) is received from AS while state[s] > 0, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processServerReset(s).



158 B. IITM’s for Secure Two-Round Message Exchange

Resources for the Server: (B.96)
if (s, Resources, 1n′ ) is received from SM while state[s] > 0, do

n[s] = n′.

Resources for Signing: (B.97)
if (pid, sid, Resources, 1n′ ) is received from EI, do

Send (pid, sid, Resources, 1n′ ) to SI.

Resources for Corruption: (B.98)
if (s, c, sidA, x, Resources, 1n′ ) is received from MX with x ∈ {c, s}, do

Let r = nonce(s, c, sidA).
If x = c, send (c, (C, s, r), Resources, 1n′ ) to KSsig.
If x = s, send (s, (S, c, r), Resources, 1n′ ) to KSsig.

In addition, simulate
!FSIG | !PSI(except) | !F

KSsig | !FLC

and answer internal requests as well as request from the adversary to these machines, but in the
following two cases, before the response messages are sent out, take additional actions:

Corruption of a signature scheme: (B.99)
if (pid, sid, Corrupted, p) is sent from SIG to A, do

If sid = (S, c, r),
Let x = s and let s = pid.

If sid = (C, s, r),
Let x = c and let c = pid.

Let sidA = sid(s, c, r).
If sidA 6= ⊥,

Call corrupt(s, c, sidA, x).

Corruption of a verification scheme: (B.100)
if (pid, sid, ssid, Corrupted, p) is sent from SIG to A, do

If (sid = (S, c, r)) ∧ (ssid = C),
Let x = s and let s = pid.

If (sid = (C, s, r)) ∧ (ssid = S),
Let x = c and let c = pid.

Let sidA = sid(s, c, r).
If sidA 6= ⊥,

Call corrupt(s, c, sidA, x).

Functions:

Initialization of a server:
processServerInit(s)

Let state[s] = 0
Send (s, GetParameters) to AS.
Recv (s, Parameters, cap[s], tol+[s]) from AS with cap[s] > 0 or tol+[s] > 0.
Let t[s] = getTime(s, S).
Let tmin[s] = t[s] + tol+[s], n[s] = 0, and L[s] = [ ].
Let state[s] = 1.
Send (s, InitOK) to SM.

Request to send the request message:
processRequestRequest(s, c, sidA, pc, nc)

Generate an η-bit nonce r randomly.
Let state[c, s, r] = 1 and let n[c, s, r] = nc.
Let sessions = sessions∪ {(s, c, sidA, r)}.
Let t = getTime(c, (C, s, r)).
Let mc = (From : c, To : s, MsgID : r, Time : t, Body : pc).
Let pksig = getSigKey(c, (C, s, r)).
Let σc = sign(c, (C, s, r), mc).
Let state[c, s, r] = 2.
Send (mc, σc) to AC.
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Approval to send the request message:
processRequestApproval(mc, σc)

Let (From : c, To : s, MsgID : r, Time : tc, Body : pc) = mc.
If |pc| > n[s], break.
Let n[s] = 0.
Let pksig = getSigKey(c, (C, s, r)).
Let t[s] = getTime(s, S).
Let b = verify(c, (C, s, r), S, mc, σc, pksig).
If (¬b) ∨ (tc ≤ tmin[s]) ∨ (tc > t[s] + tol+[s]) ∨ (∃t′, c′, z′ : (t′, r, c′, z′) ∈ L[s]), break.
While |L[s]| ≥ cap[s]:

Let tmin[s] = min{t′ | (t′, r′, c′, z′) ∈ L[s]}.
For (t′, r′, c′, z′) ∈ L[s] with (¬z′) ∧ (t′ ≤ tmin[s]),

Send (s, c′, sid(s, c′, r′), Expire) to MX.
Recv (s, c′, sid(s, c′, r′), ExpireOK) from MX.

Let L[s] = {(t′, r′, c′, z′) ∈ L[s] | t′ > tmin[s]}.
Let L[s] = L[s] ∪ {(t, r, c, false)}.
Send (s, c, sid(s, c, r), RequestOK, pc, ε) to MX.

Request to send the response message:
processResponseRequest(s, c, sidA, ps)

Let r = nonce(s, c, sidA).
Fetch (t, r, c, false) from L[s].
Update (t, r, c, false) in L[s] to (t, r, c, true).
Let pksig = getSigKey(s, (S, c, r)).
Let ms = (From : c, To : s, Ref : r, Body : ps).
Let σs = sign(s, (S, c, r), ms).
Send (ms, σs) to AS.

Approval to send the response message:
processResponseApproval(ms, σs)

Let (From : c, To : s, Ref : r, Body : ps) = ms.
Let state[c, s, r] = 3.
If |ps| > n[c, s, r], break.
Let pksig = getSigKey(s, (S, c, r)).
Let b = verify(s, (S, c, r), C, ms, σs, pksig).
If ¬b, break.
Send (s, c, sid(s, c, r), ResponseOK, ps) to MX.

Reset of the server:
processServerReset(s)

For (t, r, c, z) ∈ L[s] with ¬z,
Send (s, c, sid(s, c, r), Expire) to MX.
Recv (s, c, sid(s, c, r), ExpireOK) from MX.

Let tmin[s] = t[s] + tol+[s] and L[s] = [ ].

Get the time of a principal:
getTime(pid, sid)

Send (pid, sid, GetTime) to LC.
Recv (pid, sid, Time, t) from LC.
Return t.

Get a key from the signature key store:
getSigKey(pid, sid)

Send (pid, sid, GetKey) to KSsig.
Recv (pid, sid, PublicKey, pksig) from KSsig.
Return pksig.

Get a signature:
sign(pid, sid, m)

Send (pid, sid, Sign, m) to SIG.
Recv (pid, sid, Signature, σ) from SIG.
Return σ.



160 B. IITM’s for Secure Two-Round Message Exchange

Verify a signature:
verify(pid, sid, ssid, m, σ, pksig)

Send (pid, sid, ssid, Init) to SIG.
Recv (pid, sid, ssid, Inited) from SIG.
Send (pid, sid, ssid, Verify, m, σ, pksig) to SIG.
Recv (pid, sid, ssid, Verified, b) from SIG.
Return b.

Corrupt a session:
corrupt(s, c, sidA, x)

If ¬cor[s, c, sidA, x],
Send (s, c, sidA, Corrupt, x) to MX.
Recv (s, c, sidA, CorruptOK, x) from MX.

Let cor[s, c, sidA, x] = true.

Retrieve the nonce of a session:
nonce(s, c, sidA)

Fetch (s, c, sidA, r) from sessions.
Return r.

Retrieve the session id of a session:
sid(s, c, r)

Fetch (s, c, sidA, r) from sessions.
Return sidA.

B.3.2. Simulator (CSA) SCSA
S2ME(except)

Parameters:
Description Parameter Type
Exception Function except {0, 1}∗ → {true, false}

Tapes: C L99L9999K AC, S L99L9999K AS, AEI L9999K EI, AMX L9999KMX, ASM L9999K SM,
plus the tapes between the adversary and the simulated machines (see below)

Variables and Initialization:
Variable Type Initial Value
sessions subset of ({0, 1}∗)4 ∅
state, n, cap associative array of N 0
t, tmin, tol+, ptrs associative array of {0, 1}∗ ⊥
L associative array of sets of 5-tuples of {0, 1}∗ [ ]
cor associative array of {true, false} false

Steps: loop

Initialization of a server: (B.101)
if (s, Init) is received from SM, do

Run processServerInit(s) concurrently.

Request to send the request message: (B.102)
if (s, c, sidA, Request, pc, lpw, nc) is received from MX, do

Run processRequestRequest(s, c, sidA, pc, nc) concurrently.

Approval to send the request message: (B.103)
if (mc, σc) is received from AS with mc = (From : c, To : s, MsgID : r, Time : tc, Key : $k , Body : $c) while

state[s] > 0, do
Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server

identity s.
Run processRequestApproval(mc, σc) concurrently.

Request to send the response message: (B.104)
if (s, c, sidA, Response, $s) is received from MX, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processResponseRequest(s, c, sidA, $s) concurrently.
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Approval to send the response message: (B.105)
if (ms, σs) is received from AC with ms = (From : s, To : c, Ref : r, Body : $s) while state[c, s, r] = 2, do

Run processResponseApproval(ms, σs) concurrently.

Reset the server: (B.106)
if (s, Reset) is received from AS while state[s] > 0, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processServerReset(s).

Resources for the Server: (B.107)
if (s, Resources, 1n′ ) is received from SM while state[s] > 0, do

n[s] = n′.

Resources for Signing: (B.108)
if (pid, sid, Resources, 1n′ ) is received from EI, do

Send (pid, sid, Resources, 1n′ ) to SI.

Resources for Corruption: (B.109)
if (s, c, sidA, x, Resources, 1n′ ) is received from MX with x ∈ {c, s}, do

Let r = nonce(s, c, sidA).
If x = c, send (c, (C, s, r), Resources, 1n′ ) to KSsig.
If x = s, send (s, (S, c, r), Resources, 1n′ ) to KSsig.

In addition, simulate
!FSIG | FENC | !PSI(except) | !F

KSsig | !FKSae | !FLC

and answer internal requests as well as request from the adversary to these machines, but but in the
following two cases, before the response messages are sent out, take additional actions:

Corruption of a public key encryption scheme: (B.110)
if (pid, Algorithms, enc, dec, pk, true) is received from A to ENC and if ENC responds with (pid, Ack), do

Let cor[pid] = true.
For (pid, c, sidA, r) in sessions,

Call corrupt(pid, c, sidA).

Corruption of a signature scheme: (B.111)
if (pid, sid, Corrupted, p) is sent from SIG to A, do

If sid = (S, c, r),
Let x = s and let s = pid.

If sid = (C, s, r),
Let x = c and let c = pid.

Let sidA = sid(s, c, r).
If sidA 6= ⊥,

Call corrupt(s, c, sidA, x).

Corruption of a verification scheme: (B.112)
if (pid, sid, ssid, Corrupted, p) is sent from SIG to A, do

If (sid = (S, c, r)) ∧ (ssid = C),
Let x = s and let s = pid.

If (sid = (C, s, r)) ∧ (ssid = S),
Let x = c and let c = pid.

Let sidA = sid(s, c, r).
If sidA 6= ⊥,

Call corrupt(s, c, sidA, x).



162 B. IITM’s for Secure Two-Round Message Exchange

Functions:

Initialization of a server:
processServerInit(s)

Let state[s] = 0
Send (s, GetParameters) to AS.
Recv (s, Parameters, cap[s], tol+[s]) from AS with cap[s] > 0 or tol+[s] > 0.
Call getEncKeyae(s, S).
Let t[s] = getTime(s, S).
Let tmin[s] = t[s] + tol+[s], n[s] = 0, and L[s] = [ ].
Let state[s] = 1.
Send (s, InitOK) to SM.

Request to send the request message:
processRequestRequest(s, c, sidA, pc, nc)

If cor[s],
Call corrupt(s, c, sidA).

Generate an η-bit nonce r randomly.
Let state[c, s, r] = 1 and let n[c, s, r] = nc.
Let sessions = sessions∪ {(s, c, sidA, r)}.
Let t = getTime(c, (C, s, r)).
Let ptr = getEncKeyse(s, c, r).
Let ptrs[s, c, r] = ptr.
If isCorrupt(s, c, r, ptr),

Call corrupt(s, c, sidA, c).
If cor[s, c, sidA, c],

Send (s, c, sidA, Reveal, c) to MX.
Recv (s, c, sidA, Reveal, c, pc, pw) from MX.

Let pkae = getEncKeyae(s, (C, c, r)).
Let $k = encryptae(s, (C, c, r), pkae, (Key, ptr)).
Let $c = encryptse(s, c, r, ptr, pc).
Let mc = (From : c, To : s, MsgID : r, Time : t, Key : $k , Body : $c).
Let pksig = getSigKey(c, (C, s, r)).
Let σc = sign(c, (C, s, r), mc).
Let state[c, s, r] = 2.
Send (mc, σc) to AC.

Approval to send the request message:
processRequestApproval($c, σc)

Let (From : c, To : s, MsgID : r, Time : tc, Key : $k , Body : $c) = mc.
If |pc| > n[s], break.
Let n[s] = 0.
Let pksig = getSigKey(c, (C, s, r)).
Let t[s] = getTime(s, S).
Let b = verify(c, (C, s, r), S, mc, σc, pksig).
Let (Key, ptr) = decryptae(s, $k).
Let pc = decryptse(s, c, r, ptr, $c).
If (¬b) ∨ (tc ≤ tmin[s]) ∨ (tc > t[s] + tol+[s]) ∨ (∃t′, c′, ptr′, z′ : (t′, r, c′, ptr′, z′) ∈ L[s]), break.
While |L[s]| ≥ cap[s]:

Let tmin[s] = min{t′ | (t′, r′, c′, ptr′, z′) ∈ L[s]}.
For (t′, r′, c′, ptr′, z′) ∈ L[s] with (¬z′) ∧ (t′ ≤ tmin[s]),

Send (s, c′, sid(s, c′, r′), Expire) to MX.
Recv (s, c′, sid(s, c′, r′), ExpireOK) from MX.

Let L[s] = {(t′, r′, c′, ptr′, z′) ∈ L[s] | t′ > tmin[s]}.
Let L[s] = L[s] ∪ {(t, r, c, ptr, false)}.
Send (s, c, sid(s, c, r), RequestOK, pc, ε) to MX.
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Request to send the response message:
processResponseRequest(s, c, sidA, ps)

Let r = nonce(s, c, sidA).
Fetch (t, r, c, ptr, false) from L[s].
Update (t, r, c, ptr, false) in L[s] to (t, r, c, ptr, true).
If isCorrupt(s, c, r, ptr),

Call corrupt(s, c, sidA, s).
If cor[s, c, sidA, s],

Send (s, c, sidA, Reveal, s) to MX.
Recv (s, c, sidA, Reveal, s, ps, pw) from MX.

Let $s = encryptse(s, c, r, ptr, ps).
Let pksig = getSigKey(s, (S, c, r)).
Let ms = (From : c, To : s, Ref : r, Body : $s).
Let σs = sign(s, (S, c, r), ms).
Send (ms, σs) to AS.

Approval to send the response message:
processResponseApproval(ms, σs)

Let (From : c, To : s, Ref : r, Body : $s) = ms.
Let state[c, s, r] = 3.
If |$s| > n[c, s, r], break.
Let pksig = getSigKey(s, (S, c, r)).
Let b = verify(s, (S, c, r), C, ms, σs, pksig).
If ¬b, break.
Let ps = decryptse(s, c, r, ptrs[s, c, r], $s).
Send (s, c, sid(s, c, r), ResponseOK, ps) to MX.

Reset of the server:
processServerReset(s)

For (t, r, c, ptr, z) ∈ L[s] with ¬z,
Send (s, c, sid(s, c, r), Expire) to MX.
Recv (s, c, sid(s, c, r), ExpireOK) from MX.

Let tmin[s] = t[s] + tol+[s] and L[s] = [ ].

Get the time of a principal:
getTime(pid, sid)

Send (pid, sid, GetTime) to LC.
Recv (pid, sid, Time, t) from LC.
Return t.

Get a key from the signature key store:
getSigKey(pid, sid)

Send (pid, sid, GetKey) to KSsig.
Recv (pid, sid, PublicKey, pksig) from KSsig.
Return pksig.

Get a key from the public key encryption key store:
getEncKeyae(pid, sid)

Send (pid, sid, GetKey) to KSae.
Recv (pid, sid, PublicKey, pkae) from KSae.
Return pkae.

Get a key from the public key encryption key store:
getEncKeyse(s, c, r)

Send ((s, c, r), KeyGen) to ENC.
Recv ((s, c, r), KeyGen, ptr) from ENC.
Return ptr.

Get a signature:
sign(pid, sid, m)

Send (pid, sid, Sign, m) to SIG.
Recv (pid, sid, Signature, σ) from SIG.
Return σ.
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Verify a signature:
verify(pid, sid, ssid, m, σ, pksig)

Send (pid, sid, ssid, Init) to SIG.
Recv (pid, sid, ssid, Inited) from SIG.
Send (pid, sid, ssid, Verify, m, σ, pksig) to SIG.
Recv (pid, sid, ssid, Verified, b) from SIG.
Return b.

Encrypt a plaintext (public key encryption):
encryptae(pid, sid, pkae, m)

Send (pid, sid, Init) to ENC.
Recv (pid, sid, Inited) from ENC.
Send (pid, sid, Enc, pkae, m) to ENC.
Recv (pid, sid, Ciphertext, $) from ENC.
Return $.

Decrypt a ciphertext (public key encryption):
decryptae(pid, $)

Send (pid, Dec, $) to ENC.
Recv (pid, Plaintext, m) from ENC.
Return m.

Encrypt a plaintext (symmetric encryption):
encryptse(s, c, r, ptr, m)

Send ((s, c, r), Enc, ptr, m) to ENC.
Recv ((s, c, r), Ciphertext, $) from ENC.
Return $.

Decrypt a ciphertext (symmetric encryption):
decryptse(pid, ptr, $)

Send (pid, Dec, ptr, $) to ENC.
Recv (pid, Plaintext, m) from ENC.
Return m.

Corruption status of a symmetric key:
isCorrupt(s, c, r, ptr)

Send ((s, c, r), Corrupted?, ptr) to ENC.
Recv ((s, c, r), CorruptionState, b) from ENC.
Return b.

Corrupt a session:
corrupt(s, c, sidA)

Call corrupt(s, c, sidA, c).
Call corrupt(s, c, sidA, s).

Corrupt a session:
corrupt(s, c, sidA, x)

If ¬cor[s, c, sidA, x],
Send (s, c, sidA, Corrupt, x) to MX.
Recv (s, c, sidA, CorruptOK, x) from MX.

Let cor[s, c, sidA, x] = true.

Retrieve the nonce of a session:
nonce(s, c, sidA)

Fetch (s, c, sidA, r) from sessions.
Return r.

Retrieve the session id of a session:
sid(s, c, r)

Fetch (s, c, sidA, r) from sessions.
Return sidA.
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B.3.3. Simulator (PA) SPA
S2ME(except)

Parameters:
Description Parameter Type
Exception Function except {0, 1}∗ → {true, false}

Tapes: C L99L9999K AC, S L99L9999K AS, AEI L9999K EI, AMX L9999KMX, ASM L9999K SM,
plus the tapes between the adversary and the simulated machines (see below)

Variables and Initialization:
Variable Type Initial Value
sessions subset of ({0, 1}∗)5 ∅
state, n, cap associative array of N 0
t, tmin, tol+ associative array of {0, 1}∗ ⊥
L associative array of sets of 5-tuples of {0, 1}∗ [ ]
cor associative array of {true, false} false

Steps: loop

Initialization of a server: (B.113)
if (s, Init) is received from SM, do

Run processServerInit(s) concurrently.

Request to send the request message: (B.114)
if (s, c, sidA, Request, pc, lpw, nc) is received from MX, do

Run processRequestRequest(s, c, sidA, pc, lpw, nc) concurrently.

Approval to send the request message: (B.115)
if (mc, σc) is received from AS with mc = (From : c, To : s, MsgID : r, Time : tc, Body : pc) while state[s] > 0, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processRequestApproval(mc, σc) concurrently.

Request to send the response message: (B.116)
if (s, c, sidA, Response, ps) is received from MX, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processResponseRequest(s, c, sidA, ps) concurrently.

Approval to send the response message: (B.117)
if (ms, σs) is received from AC with ms = (From : s, To : c, Ref : Hr , Body : ps) while state[c, s, Hr ] = 2, do

Run processResponseApproval(ms, σs) concurrently.

Reset the server: (B.118)
if (s, Reset) is received from AS while state[s] > 0, do

Cancel any concurrent runs of processRequestApproval or processResponseRequestwith server
identity s.

Run processServerReset(s).

Resources for the Server: (B.119)
if (s, Resources, 1n′ ) is received from SM while state[s] > 0, do

n[s] = n′.

Resources for Signing: (B.120)
if (pid, sid, Resources, 1n′ ) is received from EI, do

Send (pid, sid, Resources, 1n′ ) to SI.

Resources for Corruption: (B.121)
if (s, c, sidA, s, Resources, 1n′ ) is received from MX, do

Let r = nonce(s, c, sidA).
Send (s, (S, c, hash(r)), Resources, 1n′ ) to KSsig.
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In addition, simulate
!FSIG | FENC | !PSI(except) | !F

KSsig | !FKSae | !FLC | FRO

and answer internal requests as well as request from the adversary to these machines, but in the
following two cases, take additional actions:

Corruption of a public key encryption scheme: (B.122)
if (pid, Algorithms, enc, dec, pk, true) is received from A to ENC and if ENC responds with (pid, Ack), do

Let cor[pid] = true.
For (pid, c, sidA, r, so) in sessions,

Call corrupt(pid, c, sidA).

Corruption of a signature scheme: (B.123)
if (s, (S, c, Hr), Corrupted, p) is sent from SIG to A, do

Let cor[s, c, Hr ] = true.
For sidA in sids(s, c, Hr),

Call corrupt(s, c, sidA, s).

Corruption of a verification scheme: (B.124)
if (s, (S, c, Hr), C, Corrupted, p) is sent from SIG to A, do

Let cor[s, c, Hr ] = true.
For sidA in sids(s, c, Hr),

Call corrupt(s, c, sidA, s).

Functions:

Initialization of a server:
processServerInit(s)

Let state[s] = 0
Send (s, GetParameters) to AS.
Recv (s, Parameters, cap[s], tol+[s]) from AS with cap[s] > 0 or tol+[s] > 0.
Call getEncKeyae(s, S).
Let t[s] = getTime(s, S).
Let tmin[s] = t[s] + tol+[s], n[s] = 0, and L[s] = [ ].
Let state[s] = 1.
Send (s, InitOK) to SM.

Request to send the request message:
processRequestRequest(s, c, sidA, pc, lpw, nc)

If cor[s],
Call corrupt(s, c, sidA).

Generate an η-bit nonce r randomly.
Let Hr = hash(r).
Let state[c, s, Hr ] = 1 and let n[c, s, Hr ] = nc.
Let sessions = sessions∪ {(s, c, sidA, r, false)}.
Let t = getTime(c, (C, s, Hr)).
Let pkae = getEncKeyae(s, (C, c, Hr)).
Let mc = (From : c, To : s, MsgID : Hr , Time : t, Body : pc).
Let Hmc = hash(mc).
If cor[s],

Send (s, c, sidA, Reveal, c) to MX.
Recv (s, c, sidA, Reveal, c, pc, pw) from MX,

else,
Generate an lpw-bit bitstring pw randomly.

Let m′c = (SecMsgID : r, Pass : pw, MsgHash : Hmc ).
Let $c = encryptae(s, (C, c, Hr), pkae, m′c).
Let state[c, s, Hr ] = 2.
Send (mc, $c) to AC.
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Approval to send the request message:
processRequestApproval(mc, $c)

Let (From : c, To : s, MsgID : Hr , Time : tc, Body : pc) = mc.
If |pc|+ |$c| ≥ n[s]− 1, break.
Let n[s] = 0.
Let t[s] = getTime(s, S).
Let m′c = decryptae(s, $c).
Let (SecMsgID : r, Pass : pw, MsgHash : Hmc ) = m′c.
Let H′r = hash(r).
Let H′mc = hash(mc).
If cor[s] ∨ (sid¬so(s, c, r) 6= ⊥),

Send (s, c, Test, pw) to SM.
Else,

Send (s, c, sid¬so(s, c, r), Test) to MX.
Receive (s, c, Test, b) from SM.
If (Hmc 6= H′mc ) ∨ (Hr 6= H′r) ∨ (¬b) ∨ (tc ≤ tmin[s]) ∨ (tc >

t[s] + tol+[s]) ∨ (∃t′, sid′A, c′, z′ : (t′, r, sid′A, c′, z′) ∈ L[s]), break.
While |L[s]| ≥ cap[s]:

Let tmin[s] = min{t′ | (t′, r′, sid′A, c′, z′) ∈ L[s]}.
For (t′, r′, sid′A, c′, z′) ∈ L[s] with (¬z′) ∧ (t′ ≤ tmin[s]),

Call expire(s, c′, sid′A).
Let L[s] = {(t′, r′, sid′A, c′, z′) ∈ L[s] | t′ > tmin[s]}.

If sid¬so(s, c, r) 6= ⊥,
Let sidA = sid¬so(s, c, r).
Let L[s] = L[s] ∪ {(t, r, sidA, c, false)}.
Send (s, c, sidA, RequestOK, pc) to MX.

Else,
Send (s, Session, c, cor[s] ∨ cor[s, c, Hr ], pw, pc) to SM.
Recv (s, c, sidA, Session) from MX.
Let sessions = sessions∪ (s, c, sidA, r, true).
Let L[s] = L[s] ∪ {(t, r, sidA, c, false)}.
Send (s, c, sidA, SessionOK, pw) to MX.

Request to send the response message:
processResponseRequest(s, c, sidA, ps)

Fetch (s, c, sidA, r, so) from sessions.
Fetch (t, r, sidA, c, false) from L[s].
Update (t, r, sidA, c, false) in L[s] to (t, r, sidA, c, true).
Let pksig = getSigKey(s, (S, c, Hr)).
Let ms = (From : c, To : s, Ref : hash(r), Body : ps).
Let σs = sign(s, (S, c, Hr), ms).
Send (ms, σs) to AS.

Approval to send the response message:
processResponseApproval(ms, σs)

Let (From : c, To : s, Ref : Hr , Body : ps) = ms.
Fetch (s, c, sidA, r, false) from sessions where hash(r) = Hr , or break if no such entry exists.
Let state[c, s, Hr ] = 3.
If |ps| > n[c, s, Hr ], break.
Let pksig = getSigKey(s, (S, c, Hr)).
Let b = verify(s, (S, c, Hr), C, ms, σs, pksig).
If ¬b, break.
Send (s, c, sidA, ResponseOK, ps) to MX.

Reset of the server:
processServerReset(s)

For (t, r, sidA, c, z) ∈ L[s] with ¬z,
Call expire(s, c, sidA).

Let tmin[s] = t[s] + tol+[s] and L[s] = [ ].
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Get a value from the random oracle:
hash(m)

Send (GetRO, m) to RO.
Recv (RO, Hm) from RO.
Return Hm.

Get the time of a principal:
getTime(pid, sid)

Send (pid, sid, GetTime) to LC.
Recv (pid, sid, Time, t) from LC.
Return t.

Get a key from the signature key store:
getSigKey(pid, sid)

Send (pid, sid, GetKey) to KSsig.
Recv (pid, sid, PublicKey, pksig) from KSsig.
Return pksig.

Get a key from the public key encryption key store:
getEncKeyae(pid, sid)

Send (pid, sid, GetKey) to KSae.
Recv (pid, sid, PublicKey, pkae) from KSae.
Return pkae.

Get a signature:
sign(pid, sid, m)

Send (pid, sid, Sign, m) to SIG.
Recv (pid, sid, Signature, σ) from SIG.
Return σ.

Verify a signature:
verify(pid, sid, ssid, m, σ, pksig)

Send (pid, sid, ssid, Init) to SIG.
Recv (pid, sid, ssid, Inited) from SIG.
Send (pid, sid, ssid, Verify, m, σ, pksig) to SIG.
Recv (pid, sid, ssid, Verified, b) from SIG.
Return b.

Encrypt a plaintext (public key encryption):
encryptae(pid, sid, pkae, m)

Send (pid, sid, Init) to ENC.
Recv (pid, sid, Inited) from ENC.
Send (pid, sid, Enc, pkae, m) to ENC.
Recv (pid, sid, Ciphertext, $) from ENC.
Return $.

Decrypt a ciphertext (public key encryption):
decryptae(pid, $)

Send (pid, Dec, $) to ENC.
Recv (pid, Plaintext, m) from ENC.
Return m.

Expire a session:
expire(s, c, sidA)

Send (s, c, sidA, Expire) to MX.
Recv (s, c, sidA, ExpireOK) from MX.

Corrupt a session:
corrupt(s, c, sidA)

Call corrupt(s, c, sidA, c).
Call corrupt(s, c, sidA, s).
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Corrupt a session:
corrupt(s, c, sidA, x)

If ¬cor[s, c, sidA, x],
Send (s, c, sidA, Corrupt, x) to MX.
Recv (s, c, sidA, CorruptOK, x) from MX.
Let cor[s, c, sidA, x] = true.

Retrieve the nonce of a session:
nonce(s, c, sidA)

Fetch (s, c, sidA, r, so) from sessions.
Return r.

Retrieve the session id’s of sessions:
sid¬so(s, c, r)

Fetch (s, c, sidA, r, false) from sessions.
Return sidA.

Retrieve the session id’s of sessions:
sids(s, c, Hr)

Return {sidA | ∃r, server-only : ((s, c, sidA, r, server-only) ∈ sessions) ∧ (hash(r) = Hr)}.





C. IITM’s for Mutual Authentication

C.1. Ideal Functionality

C.1.1. Ideal Single-Session Mutual Authentication Functionality FSS
MA

Tapes: FMA ←←→ EMA, FMA L9999K AMA

Variables and Initialization:
Variable Type Initial Value
i, j, state N 0
n1, n2 {true, false} false

Steps: loop

Authentication: (C.1)
if (i, j) is received from EMA while state = 0, do

Send (i, j) to AMA.
Recv (j, i) from EMA.
Send (j, i) to AMA and let state = 2.

Notification 1: (C.2)
if (i, j) is received from AMA while (state = 2) ∧ ¬n1, do

Send (i, j) to EMA and let n1 = true.

Notification 2: (C.3)
if (j, i) is received from AMA while (state = 2) ∧ ¬n2, do

Send (j, i) to EMA and let n2 = true.

CheckAddress: After the first message, accept all messages of the form (i, j) or (j, i).

C.1.2. Ideal Multi-Session Mutual Authentication Functionality FMS
MA

Tapes: FMA ←←→ EMA, FMA L9999K AMA, FOut −→ FIn

Variables and Initialization:
Variable Type Initial Value
i, j, s, t, state N 0
n1, n2, cor {true, false} false

Steps: loop

Initiation: (C.4)
if (i, j, s) is received from EMA while state = 0, do

Send (i, j, s) to AMA and let state = 1.

Request: (C.5)
if (i, j, s, t) is received from AMA while state = 1, do

Send (j, i, t, s) to FOut.
Recv (i, j, s) from FIn.
Send (i, j, s, t) to AMA and let state = 2.

Response: (C.6)
if (i, j, s, t) is received from FIn while state = 1, do

Send (j, i, t) to FOut and let state = 2.
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Notification: (C.7)
if (i, j, s) is received from AMA while state = 2, do

Send (i, j, s) to EMA and let state = 3.

Corruption: Corr(cor, true, state > 0, ε, AMA, {EMA}, EMA, i, j, s)

CheckAddress: After the first message, accept all messages that start with (i, j, s . . ..

C.2. Realization

C.2.1. Single-Session Protocol Wrapper PSS
Π

Tapes: FMA ←←→ EMA, PΠ L9999K AΠ, PΠ ←→→ G

Variables and Initialization:
Variable Type Initial Value
i, j, state N 0
r {0, 1}q(η) r R←−{0, 1}q(η)

κ listo f {0, 1}∗ [ ]
δ, cor {true, false} false

Steps: loop

Initiation: (C.8)
if (i, j) is received from EMA while state = 0, do

Send (i, j) to PG .
Recv (i, j, a) from PG .
Send (i, j) to AΠ and let state = 1.

Protocol Messages: (C.9)
if (i, j, min) is received from AΠ while state ∈ {1, 2}, do

Let κ = κ ·min.
Let (mout, δ, α) = Π(1η , i, j, a, κ, r).
If δ = A, let state = 2.
Send (i, j, mout, δ) to AΠ.

Notification: (C.10)
if (i, j) is received from AΠ while state = 2, do

Send (i, j) to EMA and let state = 3.

CheckAddress: After the first message, accept all messages that start with (i, j, . . ..

C.2.2. Multi-Session Protocol Wrapper PMS
Π

Tapes: FMA ←←→ EMA, PΠ L9999K AΠ, PΠ ←→→ PG

Variables and Initialization:
Variable Type Initial Value
i, j, s, state N 0
r {0, 1}q(η) r R←−{0, 1}q(η)

κ listo f {0, 1}∗ [ ]
δ, cor {true, false} false

Steps: loop

Initiation: (C.11)
if (i, j, s) is received from EMA while state = 0, do

Send (i, j, s) to PG .
Recv (i, j, s, a) from PG .
Send (i, j, s) to AΠ and let state = 1.
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Protocol Messages: (C.12)
if (i, j, s, min) is received from AΠ while state ∈ {1, 2}, do

Let κ = κ ·min.
Let (mout, δ, α) = Π(1η , i, j, a, κ, r).
If δ = A, let state = 2.
Send (i, j, s, mout, δ) to AΠ.

Notification: (C.13)
if (i, j, s) is received from AΠ while state = 2, do

Send (i, j, s) to EMA and let state = 3.

Corruption: Corr(cor, true, state > 0, ε, AΠ, {EMA}, EMA, i, j, s)

CheckAddress: After the first message, accept all messages that start with (i, j, s, . . ..

C.2.3. Single-Session Key Generator Wrapper PSS
G

Tapes: PG ←←→ PΠ, PG L9999K AG

Variables and Initialization:
Variable Type Initial Value
r {0, 1}q(η) r R←−{0, 1}q(η)

sentA {true, false} false

Steps: loop

Key Generation for User: (C.14)
if (i, j) is received from PΠ, do

Send (i, j,G(1η , i, r)) to PΠ.

Key Generation for the Adversary: (C.15)
if A is received from AG while sentA = false, do

Send G(1η ,A, r) to AG and let sentA = true.

C.2.4. Multi-Session Key Generator Wrapper PMS
G

Tapes: PG ←←→ PΠ, PG L9999K AG

Variables and Initialization:
Variable Type Initial Value
r {0, 1}q(η) r R←−{0, 1}q(η)

sentA {true, false} false

Steps: loop

Key Generation for User: (C.16)
if (i, j, s) is received from PΠ, do

Send (i, j, s,G(1η , i, r)) to PΠ.

Key Generation for the Adversary: (C.17)
if A is received from AG and sentA = false, do

Send G(1η ,A, r) to AG and let sentA = true.
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C.3. Simulator SMS
MA

Tapes: PΠ L99L9999K AΠ, PG L99L9999K AG , AMA L9999K FMA

Variables and Initialization:
Variable Type Initial Value
S set of 4-tuples ∅
C set of 3-tuples ∅
rG {0, 1}q(η) rG

R←−{0, 1}q(η)

sentA {true, false} false
a, r associative array of {0, 1}∗ ⊥
κ associative array of lists of {0, 1}∗ [ ]
δ, n, cor associative array of {true, false} false

Steps: loop

Initiation: (C.18)
if (i, j, s) is received from FMA, do

If (i, j, s) /∈ S,
Let S = S ∪ {(i, j, s)}, δ[i, j, s] = false, κ[i, j, s] = [ ], a[i] = G(1η , i, rG ), n[i, j, s] = false

r[i, j, s] R←−{0, 1}q(η), and cor[i, j, s] = false.
Send (i, j, s) to AΠ.

Protocol Messages: (C.19)
if (i, j, s, min) is received from AΠ while ((i, j, s) ∈ S) ∧ ¬cor[i, j, s], do

Let κ[i, j, s] = κ[i, j, s] ·min.
Let (mout, δ′, α) = Π(1η , i, j, a[i], κ[i, j, s], r[i, j, s]).
If δ′ = A, let δ[i, j, s] = true and call connect(i, j, s).
Send (i, j, s, mout, δ′) to AΠ.

Notification: (C.20)
if (i, j, s) is received from AΠ while δ[i, j, s] ∧ ¬n[i, j, s], do

Send (i, j, s) to FMA and let n[i, j, s] = true.

Key Generation for the Adversary: (C.21)
if A is received from AG while (S 6= ∅) ∧ ¬sentA, do

Send G(1η ,A, rG ) to AG and let sentA = true.

Corruption: (C.22)
if (i, j, s, Corrupt) is received from AΠ while ((i, j, s) ∈ S) ∧ ¬cor[i, j, s], do

Send (i, j, s, Corrupt) to FMA and let cor[i, j, s] = true.
Recv (i, j, s, Corrupted, m) from FMA and send it to AΠ.

Corrupted forward to the adversary: (C.23)
if (i, j, s, Recv, m, T) is received from FMA, do

Send (i, j, s, Recv, m, T) to AΠ.

Corrupted forward to the user: (C.24)
if (i, j, s, Send, m, T) is received from AΠ, do

Send (i, j, s, Send, m, T) to FMA.

Functions:

Connecting two instances:
connect(i, j, s)

If there exists a session id t with (i, j, s, t) ∈ C or (j, i, t, s) ∈ C, return.
Let t be a session id such that κ[j, i, t] is a matching conversation to κ[i, j, s].
Send (i, j, s, t) to FMA.
Recv (i, j, s, t) from FMA.
Let C = C ∪ {(i, j, s, t)}.
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C.4. Corruption Macro Corr
Parameters:

Description Parameter Type
Corruption status corrupted {true, false}
Is corruption currently possible? corruptible {true, false}
Initialization status initialized {true, false}
Corruption Message corrMsg {0, 1}∗
Tape to connect to the adversary Tadv tape
Tapes controlled by the adversary after corruption Tuser set of tapes
Tape to connect to the environment Tenv tape
Prefixes for messages to send and receive id1, . . . , idn ({0, 1}∗)n

Variables and Initialization:
Variable Type Initial Value
res N 0

Steps: loop

Corruption Request: (C.25)
if (id1, . . . , idn, Corrupted?) is received from Tenv, do

If intialized,
Send (id1, . . . , idn, corrupted) to Tenv.

Corruption: (C.26)
if (id1, . . . , idn, Corrupt) is received from Tadv, do

If corruptible ∧ initalized ∧ ¬corrupted:
Let corrupted = true.
Send (id1, . . . , idn, Corrupted, corrMsg) to Tadv.

Forward to A (this rule takes precedence over all other rules): (C.27)
if (id1, . . . , idn, . . .) = m is received from T ∈ Tuser while corrupted, do

Let res = 0 and send (id1, . . . , idn, Recv, m, T) to Tadv.

Forward to user: (C.28)
if (id1, . . . , idn, Send, m, T) is received from Tadv while

corrupted ∧ (T ∈ Tuser) ∧ (0 < |m| ≤ res) ∧ (m = (id1, . . . , idn, . . .)), do
Send m to T.

Resources: (C.29)
if (id1, . . . , idn, Resources, r) is received from Tenv while corrupted, do

Let res = |r| and send (id1, . . . , idn, Resources, r) to Tadv.

CheckAddress: Check for id1, . . . , idn.
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[KDMR08] Ralf Küsters, Anupam Datta, John C. Mitchell, and Ajith Ramanathan. On
the relationships between notions of simulation-based security. Journal of
Cryptology, 21(4):492–546, 2008.

[KLP07] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent
composition of secure protocols in the timing model. Journal of Cryptology,
20(4):431–492, 2007.

http://www.w3.org/TR/ws-gloss/
draft-hickman-netscape-ssl-01.txt


186 Bibliography

[KMG+07] Anish Karmarkar, Jean-Jacques Moreau, Martin Gudgin, Marc Hadley,
Noah Mendelsohn, Yves Lafon, and Henrik Frystyk Nielsen. SOAP Ver-
sion 1.2 Part 2: Adjuncts (Second Edition). World Wide Web Consortium,
2007. http://www.w3.org/TR/soap12-part2/.

[Knu02] Lars R. Knudsen, editor. Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT 2002),
volume 2332 of Lecture Notes in Computer Science. Springer, 2002.

[KR06] Eldar Kleiner and A. William Roscoe. On the relationship between web
services security and traditional protocols. Electronic Notes in Theoretical
Computer Science, 155:583–603, 2006.
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[KT08a] Ralf Küsters and Max Tuengerthal. Joint state theorems for public-key
encryption and digital signature functionalities with local computation.
In Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF 2008), pages 270–284. IEEE Computer Society, 2008.
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